Chapter 2
CLASSICAL THEORY OF MAXIMA AND MINIMA

Introduction

The classical theory of maxima and minima (analytical methods) is concerned with
finding the maxima or minima, i.e., extreme points of a function. We seek to determine the
values of the n independent variables xi, X2 ... Xn of a function where it reaches maxima and
minima points. Before starting with the development of the mathematics to locate these extreme
points of a function, let us examine the surface of a function of two independent variables, y(xi,
x2), that could represent the economic model of a process. This should help visualize the location
of the extreme points. An economic model is illustrated in Figure 2-1a where the contours of the
function are represented by the curved lines. A cross section of the function along line S through
the points A and B is shown in Figure 2-1(b), and in Figure 2-1(c) the first derivative of y(xi, X2)
along line S through points A and B is given.

In this example, point A is the global maximum in the region and is located at the top of a
sharp ridge. Here the first derivative is discontinuous. A second but smaller maximum is
located at point B (a local maximum). At point B the first partial derivatives of y(xi, x2) are
zero, and B is called a stationary point. It is not necessary for stationary points to be maxima or
minima as illustrated by stationary point C, a saddle point. In this example, the minima do not
occur in the interior of the region but on the boundary at points D and E (local minima). To
determine the global minima, it is necessary to compare the value of the function at these points.

In essence, the problem of determining the maximum profit or minimum cost for a
system using the classical theory becomes one of locating all of the local maxima or minima, and
then comparing the individual values, to determine the global maximum or minimum. The
example has illustrated the places to look that are:

1. at stationary points (first derivatives are zero)

2. on the boundaries

3. at discontinuities in the first derivative

When the function and its derivatives are continuous, the local extreme points will occur

at stationary points in the interior of the region. However, it is not necessary that all stationary
points be local extreme points since saddle points can occur, also.



a) Topological Map

A
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b) Cross Section of y(x, x5) Along Line S
Through Points A and B
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N

¢) First Derivative of y Along Line S
Through Points A and B

Figure 2-1 Geometric Interpretation of Function y(x,, X,)
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Locating Local Maxima and Minima (Necessary Conditions)

Using geometric intuition from the previous example, we can understand the famous
Weierstrass theorem (11, 12), which guarantees the existence of maxima and minima. It states:

Every function that is continuous in a closed domain possesses a maximum and a minimum value
either in the interior or on the boundary of the domain.

The proof is by contradiction.

There is another theorem (13) which tells how to locate extreme points in the interior of a
region of a continuous function. It states:

A continuous function of n variables attains a maximum or a minimum in the interior of a region,
only at those values of the variables for which the n partial derivatives either vanish
simultaneously (stationary points) or at which one or more of these derivatives cease to exist
(i.e., are discontinuous).

The proof involves examining the Taylor Series expansion at the points where the partial
derivatives either vanish or cease to exist.

Thus, the problem becomes one of locating points where the partial derivatives are zero
or where some of them are discontinuous. The stationary points can be located by solving the
algebraic equations which result in setting the partial derivatives of the function equal to zero.
Also, these algebraic equations must be examined for points of discontinuities, and this has to be
accomplished by inspection.

Evaluating Local Maxima and Minima (Sufficient Conditions)

As we have seen, it is not necessary for all stationary points to be local maxima and
minima, since there is a possibility of saddle or inflection points. Now we need to develop
procedures to determine if stationary points are maxima or minima. These sufficient conditions
will be developed for one independent variable first and then extended for two and n independent
variables, using the same concepts. Once the local maxima and minima are located, it is
necessary to compare the individual points to locate the global maximum and minimum.

Sufficient Conditions for One Independent Variable

To develop criteria establishing whether a stationary point is a local maximum or
minimum, we begin by performing a Taylor series expansion about the stationary point Xo.

y(x) = y(x0) + y'(X0) (x — x0) + 2 y"(x0) (X — X0)? + higher order terms (2-1)
Now, select x sufficiently close to xo so the higher order terms become negligible

compared to the second order terms. Since the first derivative is zero at the stationary point, the
above equation becomes
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y(x) = y(x0) + 2 y"(x0) (X — X0)’ (2-2)
We can determine if Xo is a local maximum or minimum by examining the value of y"(xo)
since (x — x¢)* is always positive. If y"(xo) is positive, then the terms Y5y"(x0) (x — Xo)> will
always add to y(xo) in Equation (2-2) for x taking on values that are less than or greater than xo.
For this case y(xo) is a local minimum. This is summarized in the following:
If  y"(x0)>0 then y(xo) is a minimum
y"(x0) <0 y(Xo0) 1s @ maximum
y"(x0) =0 no statement can be made
If the second derivative is zero, it is necessary to examine higher order derivatives. In
general if y"(xo) = ... = y®~D(x0)= 0, the Taylor series expansion becomes:
y(x) = y(xo) +(1/n!) y(x0) (x — X0)" (2-3)
If n is even, then (x — xo)" is always positive, and the result is:
If  y™xo)>0 then y(xo) is a minimum
y™(x0) <0  y(xo) is a maximum

If n 1s odd, then (x — x0)" changes sign as x moves from x < Xo to X > Xo, and thus there is
an inflection point. These results can be summarized in the following theorem (1).

If at a stationary point the first and possibly some of the higher derivatives vanish, then the point
is or is not an extreme point, according as the first non-vanishing derivative is of even or odd
order. If it is even, there is a maximum or minimum according as the derivative is negative or

positive.

The proof of this theorem follows the discussion given above. The following example
illustrates the principles discussed.

Example 2-1
Locate the extreme points of the following two functions:
a. y(x) = x*4 - x?/2
yx)=x—x=x(x>-1)=x(x - 1)(x+1)=0
Stationary points are x = (0, 1, -1)
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y'(x) =3x%-1

y"(0) =-1 maximum
y'(I) =2 minimum
y'(-1) = 2  minimum
b. y(x) =x°
y'(x)= 5x*=0 stationary point is x = 0
y"(x) = 20x* y"(0) =0
y"(x) = 60x> y"(0)=0 no statement can be made
yY(x) =120x y¥(0)=0
y'(x) =120 y¥(0) =120 nis odd, and the stationary

point is an inflection point.
Sufficient Conditions for Two Independent Variables

To develop the criteria for a local maximum or minimum for Xo (X10, X20), @ stationary
point for a function of two variables, a Taylor's series expansion is made about this point.

y(X1, X2) = y(X10, X20) + yx1(X1-X10) + Yx2(X2-X20)
+ Yo[yxaxi(x1-X10)* + 2yxix2(X1-X10)(X2-X20) (2-4)
+ yxax2(X2-X20)2] + higher order terms

where the subscripts x; and x> indicate partial differentiation with respect to those variables and
evaluation at the stationary point.

Again we select y(xi, x2) sufficiently close to y(Xi0, X20), so the higher order terms
become negligible compared to the second-order terms. Also, the first derivatives are zero at the
stationary point. Thus, Equation (2-4) can be written in matrix form as:

Y(xp,x,) = Y(X0,%50) + 1, (0 —X30) + ¥, (065 —Xy)

+ 50 —x9) (X, —xy) {yml Y }|:(x1 _xlo)}

(X, = Xy)

XX, yxzxz (2_5)
In matrix-vector notation, Equation 2-5 can be written as:
y(x) = y(Xo) + 72[(x — X0)Ho(X — X0)] (2-6)

where Hj is the matrix of second partial derivatives evaluated at the stationary point xo and is
called the Hessian matrix.
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The term in the bracket of Equation (2-6) is called a differential quadratic form, and y(xo)
will be a minimum or a maximum accordingly if this term is always positive or always negative.
Based on this concept, it can be shown (1) that if the following results apply, Xo 1S a maximum or
a minimum. If they do not hold, xo could be a saddle point and is not a maximum or a minimum.

y(x,) isaminimumify__ >0 and Pan - Funl
o yxle yxzxz
. . . yxlxl yxlxz

»(x,) isamaximum if y <0 and ’ y >0

An illustration of the above results is given in Example 2-2. The term in the bracket of
Equation (2-6) is an example of a quadratic form. It will be necessary to describe a quadratic
form briefly before giving the sufficient conditions for maxima and minima for n independent
variables.

Sign of a Quadratic Form

To perform a similar analysis for a function with more than two independent variables, it
1s necessary to determine what is called the sign of the quadratic form. The general quadratic
form (1) is written as:

0O(A4,x) = ZZalexj =x" (2-7)
i=l j=1
where aj;; are the components of symmetric matrix A, and aj; = aji.

It turns out (1) that we can determine if Q is always positive or always negative, for all
finite values of x; and x;, by evaluating the signs of Dj, the determinants of the principal sub-
matrices of A:

a, 4ap a;
a a a.,.
21 2 2
D, = / 2-8)
a, a, . aii

The important results that will be used subsequently are:
IfDi >0 fori=1, 2, ...n, then: A is positive definite, and Q(A, x) >0

IfDi <0 fori=1,3, ..., and
D;i >0 fori=2,4, ..., then: A is negative definite and Q(A, x) <0

If D is neither of these, then Q(A, x) and depends on the values of x; and x;.
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Sufficient Conditions for n Independent Variables

The result of the previous two sections can be extended to the case of n independent
variables by considering the Taylor series expansion for n independent variables around
stationary point Xo:

n n

y(x) = y(x,) + Zyx, (X)) y(x; = x;0) + )5 (Zzyxjixk (x; —x;0)(x; —x;,)+higher order terms
i=1 j=1 k=l
(2-9)
Again, select x sufficiently close to xo so the higher order terms become negligible

compared to the second-order terms. Also, the first derivatives are zero at the stationary point.
Thus, Equation (2-9) can be written in matrix-vector notation as:

y(x) = y(x0) + ¥2(x — x0)" Ho (X - X9) (2-10)

where x is the column vector of independent variables and Hyp, the matrix of second partial
derivative evaluated at the stationary point X, in the Hessian matrix. This is the same equation
as Equation (2-6) which was written for two independent variables.

The second term on the right hand side of Equation (2-10) is called a differential
quadratic form as shown below

Q[Ho, (x - X0)] = (x - Xo)" Ho (X - Xo) (2-11)

Equation (2-11) corresponds to Equation (2-7) in the previous section, and the
determinants of the principal sub-matrices of Hy as defined below correspond to Equation (2-8).

yxlxl yx]xz : yxlx,
Ho=[™ =~ = (2-12)

Vi, S

We can now use the same procedure in evaluating the character of the stationary points

for n independent variables. For example, if the term containing the Hessian matrix is always

positive for perturbations of the independent variables around the stationary point, then the

stationary point is a local minimum. For this differential quadratic form to be positive always,

then Hip > 0 fori=1, 2, ... n. The same reasoning can be applied for a local maximum, and the
results for these two cases are summarized below.
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y(Xo0) 1s a minimum if Hio >0 fori=1,2,..,n

y(Xo0) 1s @ maximum if Hio <0 fori=1,3,5, ...
Hio >0 1=2

If zeros occur in the place of some of the positive or negative number in the tests above
(semi-definite quadratic form), then there is insufficient information to determine the character
of the stationary point (1). As discussed in Avriel (10) higher order terms may have to be
examined, or local exploration can be performed. If the test is not met (indefinite quadratic
form), then the point is neither a maximum nor minimum (1). The following theorem from
Cooper (7) summarizes these results. It states:

If y(x) and its first two partial derivatives are continuous, then a sufficient condition for y(x) to
have a relative minimum (or maximum) at xg, when 8y(x0)/8xj =0,j =1 2, .. .n, is that

Hessian matrix be positive definite (negative definite).
The proof of this theorem employs arguments similar to those given above.

The following example illustrates these methods.
Example 2-2

The flow diagram of a simple process is shown in Figure 2-2 (2) where the hydrocarbon
feed is mixed with recycle and compressed before being passed into a catalytic reactor. The
product and unreacted material are separated by distillation, and the unreacted material is
recycled. The pressure, P, in psi and recycle ratio, R, must be selected to minimize the total
annual cost for the required production rate of 107 pounds per year. The feed is brought up to
pressure at an annual cost of $1000P, mixed with the recycle stream and fed to the reactor at an
annual cost of $4 x 10°/PR. The product is removed in a separator at a cost of $10°R per year
and the unreacted material is recycled in a recirculating compressor which consumes $1.5 x 10°R
annually. Determine the optimal operating pressure, recycle ratio, and total annual cost; and
show that the cost is a minimum.
Solution: The equation giving the total operating cost is:

C ($/yr.) = 1000P + 4 x 10°/PR + 2.5 x 10°R

Equating the partial derivatives of C with respect P and R to zero gives two algebraic equations
to be solved for P and R.

0C/oP =1000-4-10°/P*R=0
O0C/0R=2.5-10°-4-10°/PR> =0

Solving simultaneously gives:
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Unreacted
Feed

Recycle
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Figure 2-2 Flow Diagram of a Simple Process, after Wilde (2)

P =1000psi and R =4

Substituting to determine the corresponding total operating cost gives:
C =$3x 10° per year

C (P, R) is a minimum if:

o’c o'C

oP®  OPOR| .

0’C  o°C
OROP  OR?

2
% > (0 and
OP

Performing the appropriate partial differentiation and evaluation at the stationary point
(P =1000, R =4) gives:

2 10%/4
10°/4 10°/4

o’C

.?5:2>0m, =3-10°/16 > 0

Thus, the stationary point is a minimum since both determinants are positive.
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Analytical Methods Applicable for Constraints

To this point independent variables could take on any value. In actuality, the values of the
independent variables are limited, because they usually represent physical quantities such a flow
rates, temperatures, pressures, process unit, capacities and available resources. Consequently,
there are constraints on variables, if nothing more than the fact that they must be nonnegative. In
many cases they are bounded within limits as dictated by the process equipment and related by
equations such as material balances. The constraints on the variables can be of the form of
equations and inequalities.

Methods to locate the stationary points of functions (economic models) subject to
equality constraints (e.g., material and energy balance equations) will be developed, and
examples illustrating the techniques will be given. Inequality constraints can be converted to
equality constraints, and then these procedures for equality constraints can be applied with some
additional considerations.

Let us illustrate the conversion of an inequality constraint to an equality constraint using
a simple example to help visualize the concept of slack variables. In Figure 2-3 an example is
given of an equality and an inequality constraint for a distillation column. The material balance
that says that the feed rate to the column must equal the sum of the overhead and bottom
products at steady state is the quality constraint, F — (O + B) = 0. The upper limit on the capacity
of the distillation column, which was set when the equipment was designed, is the inequality
constraint, F < 50,000. This inequality constraint can be converted to an equality constraint by
adding a slack variable S as S? to ensure a positive number has been added to the equation.

F+S?=50,000 (2-13)

The term slack is used to represent the difference between the optimal and upper limit on
the capacity. It represents the unused, excess, or slack in capacity of the process unit. For
example, if Fope = 30,000 barrels per day; then S? = 20,000 barrels per day, a slack of 20,000
barrels per day; and the constraint is said to be loose 1.e., the inequality holds. If Fope = 50,000
barrels per day then there is no slack, and the constraint is said to be tight the equality holds.
This will be discussed in more detail later in the chapter. Also, if there was a lower limit on F,
e.g., F > 10,000, the same procedure would apply except S* would be subtracted from F. The
equation would be F - S? =10,000, and S is called a surplus variable.

We can now state a general optimization problem with n independent variables and m
equality constraints where the objective is to optimize (maximize or minimize) the economic
model y(x) subject to m constraint equations f; (x).

optimize: y(Xi, X2,...Xn) (2-14)

subject to: fi (x1, X2,...,Xn) =0 fori=1,2,..m (2-15)
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—— O =Overhead

Distillation Column
F=Feed ——

L— B =Bottoms

Material Balance: F- (O +B)=0 (equality constraint)

Upper Limit on the Feed Rate: F < 50,000 barrels per day ( inequality constraint )

Figure 2-3 lllustration of Equality and Inequality Constraints

There must be fewer equality constraints than independent variables to be able to
optimize y(x), 1.e., n > m. If m =n the values of the xj's are uniquely determined, and there is no
optimization problem. Also, if m > n the problem is said to be over-determined since there are
more equations than unknowns. There is no optimization problem for this case either.

There are three methods of locating the optimum points of the function y(xi, x2, ..., Xa) of
n independent variables subject to m constraint equations fi(xi, X2, ..., Xn) = 0. These are: direct
substitution, solution by constrained variation and method of Lagrange multipliers. We will find
that direct substitution cannot always be used, and the method of Lagrange multipliers will be the
one most frequently employed.

Direct Substitution

This simply means to solve the constraint equations for the independent variables and to
substitute the constraint equations directly into the function to be optimized. This will give an
equation (economic model) with (n-m) unknowns, and the previous techniques for unconstrained
optimization are applicable.
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Unfortunately, it is not always possible to perform the algebraic manipulations required
for these substitutions when the constraint equations are somewhat complicated. Consequently,
it is necessary to resort to the following methods.

Constrained Variation

This method (3, 14) is used infrequently but furnishes a theoretical basis for important
multivariable numerical search methods such as the generalized reduced gradient. It is best
illustrated for the case of two independent variables by considering the example shown in Figure
2-4. There is a local minimum of the constrained system at point A and a local maximum at
point B. The maximum of the unconstrained system is at C.

aye
/ /

" c———

A~

flx;,xo) =0

)

Figure 2-4 Sketch of a Profit Function y(x1, x2) and a Constraint Equation f(x1, x2) = 0
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At point A the curve y(xi1, X2) = 1 and the curve f(xi, x2) = 0 are tangent and have the
same slope. This means that differential changes, dx; and dx», produce the same change in the
dependent variables y(x1, x2) and f(x1, x2). This can be expressed as:

LT 216
dxzy_dxzf 10

We will need the total derivatives of y and f to combine with Equation (2-16) to obtain the final
result. Using the first terms in a Taylor series expansion for y and f gives:

dy = a—ydxl +a—ydx2 =0
Ox, ox,

L AP
le 6x2 (2_17)

At the minimum, point A, and the maximum, point B, dy is equal to zero; and the constraint is
satisfied, i.e., f=0 and df = 0.

Combining equations (2-16) and (2-17) gives the following result.

oy of oy of _,
8Xl 8x2 5X2 5X1 (2-18)

This is an algebraic equation, and it is to be solved in combination with the constraint
equation to locate the stationary points. It should be remembered in this case that gy /6X1 , Oy / ox,

of /le , and of /axz are not necessarily zero at Points A and B. In the unconstrained case at
point C, oy / ox,» Oy / Ox, are zero, however.

This technique is illustrated with the following example. Then the extension to the
general case for n independent variables will be given.

Example 2-3
Find the stationary points of the following function using the method of constrained variation.
optimize: y(X) = X1X2
subject to: f(x)=x?+x2-1=0
The first partial derivatives are:

oy _ oy of of

=X — = — = —=2X
U w D w, o



Substituting into Equation (2-18) gives
Xx202X2 —x1°2x1 = 0 or x22 - xi2 =0

This equation is solved simultaneously with the constraint equation.

X2+ x2-1=0
The result is:

xi = +(%)” and x2=+(%)"
for the values of the independent variables at the stationary points

In general, we are interested in finding the stationary points of a function y(xi, x2, ..., Xn)

subject to m constraint equations fi(x1, X2, ..., Xn) = 0 where 1 = 1, ... m, and n > m. The same

reasoning applied in (n + 1) dimensional space as applied to the three-dimensional space above,
and these results in the following equations:

dy—a_ydxl _|_a_ydx2 +...+6_ydxn =0

B Ox, Ox, ox,
df‘l :%dxl+%dx2+...+%dxn:0 (2-19)
ox, ox, X,
0 0 0
S = ﬁdxl +ﬁdx2 +...+den =0
ox, Ox, ox,

The set of equations given in Equation (2-19) above can be solved for (n - m) equations
to go with the m constraint equations to locate the stationary points. The (n - m) equations
corresponding to Equation (2-18) of the two independent variable case can be written in terms of
(n - m) Jacobian determinants which are:

J{ y. b6y fy Lo

XX X X

(2-20)

J[ Y, £, 15, f }:O

X5 X,p, X, X

m?“*n
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The Jacobian determinant for the first equation above is:

oy o Y
axl axz axm-H

v, £, 6, % % _afl (2-21)
J = axl 6)(?2 axmﬂ
XpXos X, Xy : L :
P U o,
axl axz axm-H

A total of n equations are solved for the stationary points, i.e., the (n - m) equation generated by
Equation (2-20) above and the m constraint equations. A derivation of these results is given by
Beveridge and Schechter (6). This involves using Cramer's rule and eliminating the dxj's. Also,
similar results are given for this general case in the text by Wilde and Beightler (4). However, a
different nomenclature is used, and the results are extended to include Lagrange multipliers.

To illustrate the use of the Jacobian determinants, consider the following example, which
obtains Equation (2-18).

Example 2-4
optimize: y(X1, X2)

subject to: f(x1, x2) =0

For this problem there are 2 independent variables (n = 2) and one constraint (m = 1), so the
evaluation of one Jacobian determinant is required.

y
J{y,_f} _|ox,  ox,
x| lof o
ox, Ox,

Expanding gives the following equation, gives:

Ox, Ox, Ox, Ox, -

This is the same as Equation (2-18) that was solved with the constraint equation for the
stationary point values of x; and x> in Example 2-3.

Lagrange Multipliers

The most frequently used method for constraints is to employ Lagrange multipliers. The
technique is presented using two independent variables and one constraint equation to illustrate
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the concepts. Then the procedure will be extended to the general case of n independent variables
and m constraint equation. For the case of two independent variables we have:

optimize: y(X1, X2)
(2-22)
subject to: f(x1,x2) = 0

We want to show how the Lagrange multiplier arises and that the constrained problem

can be converted into an unconstrained problem. The profit function and the constraint equation
are expanded in a Taylor series. Then, using the first order terms gives:

dy—a—ydxl +8_ydx2

- Oox, ox,
0= idxl + idxz
Ox, ox,

This form of the constraint equation will be used to eliminate dx; in the profit function. Solving
for dx> using the Taylor series for the constraint equation gives:

of
0X
dx; =5 4%

0X,

This equation is substituted into the equation for dy to obtain:

of
oy oy | 0x
dy = dx,— L1d
Y ox, | 0x,| of :
0X,
and rearranging gives:
_ 9y
dv — oy 0x, of dx,
ox, of ox,
X,
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Now we can define A as the value of (—0y/ox,)/(6f / bx,)at the stationary point of the

constrained function. This ratio of partial derivatives A is a constant at the stationary point, and
the above equation can be written as:

dy :|:ﬂ+l£:|dxl
0x, 0x,

or

dy={%}dxl

At a stationary point dy = 0, and this leads to:

) _,
0x,

Now, if L is defined as L =y + A f, the above gives:

oL

—=0
0X,

This is one of the necessary conditions to locate the stationary points of an unconstrained

function L which is constructed from the profit function y(xi, X2) and the constraint equation

f(x1, x2) = 0.

Now the same manipulations can be repeated except using the constraint equation to
eliminate dx; from the profit function and defining A as the value of (—gy/ ox,) /(of / ox,) -

Then using the results from constrained variations, Equation 2-18, to show that the two values
defined for A are equal, the other necessary condition is obtained to locate the stationary points
of an unconstrained function L.

oL _y
00X,
Therefore, the constrained problem can be converted to an unconstrained problem by
forming the Lagrange or augmented, function, L, and solving this problem by the previously
developed methods of setting the first partial derivatives equal to zero. This will give two
equations to solve for the three unknowns xi, x2, and A at the stationary point. The third
equation to be used is the constraint equation. In fact, the Lagrange multiplier is sometimes
treated as another variable since 0L /04 = 0 gives the constraint equation. The example used for
the method of constrained variation will be used to illustrate these ideas.
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Example 2-5:
Find the stationary points for the following constrained problem using the method of Lagrange
multipliers
optimize: y(X)=XiX2
subjectto: f(x)=x12+ x2°~1 =0
The Lagrange, or augmented, function is formed as shown below.
L(xi,x2, 1) = xixa + A (xi? +x22 — 1)
The following equations are obtained from setting the first partial derivatives equal to zero
OL/ox, = x2t2Ax1=0
OL/ox, =x11t21x2=0
OL/0A =x1*+ x*-1=0

Solving the previous equations simultaneously gives the following stationary points:

maxima: x1 = (%)%, xa= (%)% A =-1%
xi=-(A)"% xx=-04)" A=-%

minima: x1 = (%)%, x2=-(%)%, A= Y%
xi=-(%)" x2 = (B, A= Y%

The types of stationary points, i.e., maxima, minima or saddle points were determined by
inspection for this problem. Sufficient conditions for constrained problems will be discussed
subsequently in this chapter.

The development of the Lagrange function of the case of n independent variables and m
constraint equations is a direct extension from that of two independent variables and one
constraint equation, and Avriel (10) gives a concise derivation of this result. (See problem 2-14).
The Lagrange or augmented, function is formed as previously, and for every constraint equation
there is a Lagrange multiplier. This is shown below:

optimize: y(x) X = (X1, X2, ..., Xn)©
(2-23)

subject to: fix)=0 fori=1,2,..,m where n > m

The Lagrange, or augmented, function is formed from the constrained problem as follows:
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Lo 2) = (9 + Y4, () 224)

To locate the stationary points of the constrained problem, the first partial derivatives of the
Lagrange function with respect to the xj's and A.'s are set equal to zero (necessary conditions).

There are (n + m) equations to be solved for the (n + m) unknowns: n xj'sand m A's

It is sometimes said that the method of Lagrange multipliers requires more work than the
method of constrained variation since an additional m equations have to be solved for the values
of the Lagrange multipliers. However, additional and valuable information is obtained from
knowing the values of the Lagrange multipliers, as will be seen. The following simple example
gives a comparison among the three techniques.

Example 2-6
For the process in Example 2-1 (2) it is necessary to maintain the product of the pressure and
recycle ratio equal to 9000 psi. Determine the optimal values of the pressure and recycle ration
and minimum cost within this constraint by direct substitution, constrained variation and
Lagrange multipliers.
Again, the problem is to minimize C.

C=1000P +4 « 10°/PR +2.5 « 10°R
However, C is subject to the following constraint equation.

PR =9000

Direct Substitution: Solving the constraint above for P and substituting into the objective
function gives:

C=9x 10%R +(4/9) « 10°+ 2.5+ 10°R
Setting dC/dR = 0 and solving gives:

R =6 and P = 1500 psi.

The corresponding cost is:
C=344-10°

This is greater cost than the unconstrained system, as would be expected.

Constrained Variation: Using Equation 2-18 and the constraint equation, the equations to be
solved for this case are:
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a_Ci(PR _9000)—6—CQ(PR -9000)=0
OP OR OR OP
PR —-9000=0

The first equation simplifies to:
P =250R

which when solved simultaneously with the second equation gives the same results as direct
substitution.

Lagrange Multipliers: The Lagrange, or augmented, function is:
L = 1000P + 4 x 10°PR + 2.5 x 10°R + A (PR -9000)
Setting partial derivatives of L with respect to P, R and 4 equal to zero give:
1000 -4+ 10°/P°R+ AR =0
2.5105-4+10°PR2+ AP =0
PR —-9000 =0

Solving the above simultaneously gives the same results as the two previous methods and a value
for the Lagrange multiplier.

P =1500, R=6, A=-1173
Method of Steepest Ascent

A further application of the method of Lagrange multipliers is developing the method of
steepest ascent (descent) for a function to be optimized. This result will be valuable when search
methods are discussed.

To illustrate the direction of steepest ascent a geometric representation is shown in Figure
2-5. To obtain the direction of steepest ascent, we wish to obtain the maximum value of dy, and
y(X1, X2...Xn) 1s @ function of n variables. Also, there is a constraint equation relating dx, dx> ...
dx, and ds as shown in Figure 2-5 for two independent variables.

The problem is:
maximize dy = Zﬂdx, (2-25)
i=1 ax[
subject to (ds)® =" (dx,)’ (2--26)
i=l
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Direction of Steepest Ascent

Xo (‘xl() > X0 )

Figure 2-5 Geometric Representation of the Direction of Steepest Ascent.

To obtain the maximum value of dy the Lagrange function is formed as follows:

L=% %dxi +2 [(ais)2 —Z":(dx,.)z}

i=1 i

Differentiating L with respect to the independent variables dxj and equating to zero gives:

D _ opdge =0 forj=1.2...n (2-27)
ox; /

These n equations are solved simultaneously with the constraint equation for the values of dx;
and 4. Solving for A gives:
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2 1/2
1 | & oy

A=t— —
2ds ;(ﬁxi]

and solving for dx; by substituting Equation 2-28 into Equation 2-27 gives:

(2-28)

-1/2

2
dx, _idslz[ﬁ_yJ } s_y fori=1,2,...n  (2-29)
X

The term in the brackets in Equation 2-29 is not a function of j, and consequently dx; is
proportional to 8y/8xj. The positive sign indicates the direction of steepest ascent, and the

negative sign indicates the direction of steepest descent.

If a constant of proportionality k is used to represent the term in the brackets in Equation
2-29, this equation can be written as:

de, =tk .
J E%X- .
J forj=1,2,...n (2-30)

If a finite-difference approximation is used for dxj = (xj — Xjo) and Oy / Ox; is evaluated at

X0, then the following equation gives the direction of steepest descent or gradient line.

oy(x,)
Ox, forji=1,2,...n 2-31)

X; =X t+k

This equation can be written vector notation in terms of the gradient of y evaluated at xo, Vy(x, ),
as:

x = xo + kVy(x,) (2-32)

If the positive sign is used, then movement is along the line in the direction of steepest ascent. If
the negative sign is used, then movement is along the line in the direction of steepest descent.

The following example illustrates the use of the method of steepest descent on a simple
function.

Example 2-7

Find the minimum along the direction of steepest descent of the function given below starting at
the point xo = (1, 1).
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y=x12 -l-xz2

Gradient line (steepest descent) is:
X = x - kVy(x,)
or for two independent variables:

() )

X, =x,—k
1 10 2
ox, ox,

Evaluating the partial derivatives at the starting point xo = (1, 1):

@/(xo) — 2x10 — 2 a.y(x()) — 2x20 — 2
Ox, 0ox,
The gradient line is:
x1=1-2k
x2=1-2k

Substituting the gradient line into the function to be minimized gives:
y=(1-2k)*> + (1-2k)> = 2(1 - 2k)?
Computing dy/dk will locate the minimum along the gradient line, i.e.,

D g1-2k)=0
dk

and
k=" 1is the stationary point
The corresponding values of x; and x; are
x1=1-2("%)=0 x2=1-2("%)=0

It turns out that the minimum along the gradient line is also the minimum for the function in this
problem since it is the sum of squares.

The method of steepest ascent is the basis for several search techniques described in
Chapter 6, e.g. Steep Ascent Partan. It should be noted that when dealing with physical systems,
the direction of steepest ascent (descent) may be only a direction of steep ascent (descent)
depending on the scales used to represent the independent variables. This is discussed and
illustrated by Wilde (5), and Wilde and Beightler (4).
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Economic Interpretation of the Lagrange Multipliers

The values of the Lagrange multipliers at the optimum provide additional and important
information. If the constraint equations are written with parameters b; on the right-hand side, the
Lagrange multipliers give the change in the profit function with respect to these parameters,
0y/0b,. Many times, the right-hand sides of the constraint equations represent the availability

of raw materials, demand for products or capacities of process units. Consequently, it is
frequently important to know how the optimal solution is affected by changes in availability,
demand and capacities. As we shall see, the Lagrange multipliers are given the names shadow
prices and dual activity in linear programming where these changes are analyzed by sensitivity
analysis.

The following brief derivation obtains the result that gy/0b = A for the case of one

constraint and two independent variables, and the extension to m constraint equations with n
independent variables is comparable.

optimize: y(xi, X2)

(2-33)
subject to: f(x1,x2)=b
First, we can obtain the following equation from the profit function by the chain rule.
P _po o
ob 8x1 ob 6x2 ob (2_34)

Also, we can obtain the next equation from the constraint equation written as f — b = 0 by the
chain rule.

T xm, T x
ox, ob 0Ox, Ob (2-35)

Then the equation from the constraint, Equation 2-35, is multiplied by the Lagrange multiplier
and added to the equation from the profit function, Equation 2-34, to give:

Y _ Yo% Oy ox, OO of &
ob ox, ob 0Ox, Ob ox, ob 0Ox, oOb
Rearranging gives:

@: Q-ﬁ-li%-i- ay+iaf axz_i
ob |\ ox, ox, ) ob |\ ox, Ox, ) Ob
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»_ 8(y+/1f)j%+ 8(y+8f)J8xz )
ob

ox, ob ox, ob
p_(oh | [oL) %, 5 _
ob \ox, )ob \ox, ) ob (2-36)

The values of I, / Ox, and JL /Ox, are zero at the stationary point (necessary

conditions), and consequently0L/0b=—A. Thus, the change in the profit function y with
respect to the right-hand side of the constraint b is equal to the negative of the Lagrange
multiplier. Also, comparable results can be obtained for the case on n independent variables and
m constraint equations to obtain the following result using a similar procedure and arguments

(7).

&y
@ __, (2-37)
b, :

In the next section, we will see that the Lagrange multiplier is also a key factor in the
analysis of problems with inequality constraints.

Inequality Constraints

An additional complication arises when seeking the optimum value of a profit or cost
function if inequality constraints are included. Although the same procedures are used, it will be
necessary to consider two cases for each inequality constraint equation. One case is when the
constraint is a strict equality and Lagrange multiplier is not zero. The other is when the
constraint is an inequality and Lagrange multiplier is zero. This is best illustrated by the
following example with one inequality constraint equation as shown below.

optimize: y(x)
(2-38)
subject to: f(x) <0

As described previously, the procedure is to add a slack variable xs as xs*> and form the
Lagrange function:

L(x,4) = y(x) +A [ f(x) + x¢*] (2-39)

Then the first partial derivatives with respect to the xi's, xs and A are set equal to zero to have a
set of equations to be solved for the stationary points. To illustrate the complication, the
equation obtained for the slack variable is:

a—L:UJCS:O or Ax, =0

OX, (2-40)
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The result is two cases, i.e., either A=0and xs # 0,or 4 # 0O and Xxs=0. If A =0 and xs
# 0, the inequality holds; and the constraint is said to be loose, passive or inactive. If 4 # 0
and xs = 0, then the equality holds; and the constraint is said to be tight or active. The following
example illustrates this situation using a modification of the previous simple process.
Example 2-8
For the process the cost function is:
C=1000P + 4+10°PR + 2.510°R
However, C is subject to the inequality constraint equation.
PR <9000
Adding the slack variable S, as S?, and forming the Lagrange function gives:

L = 1000P + 4 « 10°/PR + 2.5 «10°R+A (PR + S?-9000)

Setting the first partial derivatives of L with respect to P, R, S and A equal to zero gives the
following four equations:

oL 4-10°

T =1000- "5+ AR =0
oP P°R
9
O _ysa0s -1 e
OR PR
L 2i5=0
as
oL

— =PR+5*-9000=0
Y

The two casesare 4 # 0,S=0and A=0,S# 0.

For the case of 4 # 0, S # 0, the equality PR = 9000 holds, i.e., the constraint is active. This was
the solution obtained in Example 2-6, and the results were:

C=19%3.44+10°peryear P =1500 psi R=6 y=-117.3

For the case of A =0, S # 0, the constraint is an inequality, i.e., inactive. This was the solution
obtained in Example 2-6 and the results were:

C =$3.0 * 10° per year P =1000 psi R=4 S =(5000)"

The example above had only one inequality constraint and two cases to consider.
However, with several inequality constraints locating the stationary points can become time-
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consuming, for the possibilities must be searched exhaustively. A procedure for this evaluation
has been given by Cooper (7) and Walsh (8) as follows:

1. Solve the problem of optimizing: y(x), ignoring the inequality constraints, i.e., having all
positive slack variables. Designate this solution xo. If X satisfies the constraints as inequalities
an optimum has been found.

2. If one or more constraints are not satisfied, select one of the constraints to be an equality, i.e.,
active (the slack variable for this constraint is zero), and solve the problem. Call this solution x;.
If x; satisfies all of the constraints, an optimum has been found.

3. If one or more constraints are not satisfied, repeat step 2 until every inequality constraint has
been treated as an equality constraint (slack variable being zero) in turn.

4. If step 3 did not yield an optimum, select combinations of two inequality constraints at a time
to be equalities; and solve the problem. If one of these solutions satisfies all of the constraints,
an optimum has been found.

5. 1If step 4 did not yield an optimum, select combinations of three inequality constraints at a
time to be equalities, and solve the problem. If one of these solutions satisfies all of the
constraints, an optimum has been found. If not, try combinations of four inequality constraints at
a time to be equalities, etc.

The above procedure applies assuming that the stationary point located is a maximum or
a minimum of the constrained problem. However, there is a possibility that several stationary
points will be located; some could be maxima, some minima and others saddle points. In
Example 2.5 four stationary points were found, two are maxima, one a minimum and one a
saddle point. Also, from Equation 2-40 for each inequality constraint where the strict inequality
holds, the slack variable is positive; and the Lagrange multiplier is zero. For each inequality
constraint where the equality holds, the slack variable is zero, and the Lagrange multiplier is not
zZero.

In the next section necessary and sufficient conditions for constrained problems are
described to determine the character of stationary points. This will be similar to and an
extension of the previous discussion for unconstrained problems.

Necessary and Sufficient Conditions for Constrained Problems

The necessary conditions have been developed by Kuhn and Tucker (14) for a general
nonlinear optimization problem with equality and inequality constraints. This optimization
problem written in terms of minimizing y(x) is:

minimize: y(X) (2-41)

subject to: fix) <0 fori=1,2,...h (2-42)
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fix)=0 fori=h+1, .., m (2-43)
where y(x) and fi(x) are twice continuously differentiable real-valued functions.
Any value of x that satisfies the constraint Equations (2-42) and (2-43) is called a feasible
solution to the problem in the Kuhn-Tucker theory. Then to locate points that can potentially be
local minima of Equation 2-41 and satisfy the constraint Equations 2-42 and 2-43, the Kuhn-

Tucker necessary conditions are used. These conditions are written in terms of the Lagrange
function for the problem which is:

L(x,2) = y(x)+2/1[f(x)+xw] AW
Py (2-44)

where the xq+'s are the surplus variables used to convert the inequality constraints to equalities.

The necessary conditions for a constrained minimum are given by the following theorem
(7, 8, 10, and 14).

To minimize y(x) subject to fi(x) <0 fori=1,2 ... hand fi(x) =0 fori =h + 1, ..., m, the
necessary conditions for the existence of a relative minimum at x* are:

Y(x7) Z;t@f(X) iﬁﬁf(x*)zo
1. o, a; Lmo oy forj=1.2....n
2 fix*) <0 fori=1,2,...,h

3. fi(x*) = 0 fori=h+1,2,...,m

(2-45)
4. Aifix*) =0 fori=1,2,...,h
5. Ai >0 fori=1,2,...,h
6. Ai is unrestricted in sign fori=h+1,2, ..., m

Examining these conditions:

The first one is setting the first partial derivatives of the Lagrange function with respect to the
independent variables x1, X2, ..., Xa €qual to zero to locate the Kuhn-Tucker point, x*.

The second and third conditions are repeating the inequality and equality constraint equations
that must be satisfied at the minimum of the constrained problem.

The fourth condition is another way of expressing 4i xn+i = 0 for i = 1, 2, ..., h from setting the
partial derivatives of the Lagrange function with respect to the surplus variables equal to zero.
Either Ai # 0 and xn+i = 0 (constraint is active) or 4 = 0 and X+ # 0 (constraint is inactive).
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Thus, the product of the Lagrange multiplier and the constraint equation set equal to zero is an
equivalent statement, and this is called the complementary slackness condition (15).

The fifth condition comes from examining Equation 2-37, i.e., Oy(x*)/0b, = —A. The argument
is that as b; is increased, the constraint region is enlarged; and this cannot result in a higher value
for y(x*), the minimum in the region. However, it could result in a lower value of y(x*); and
correspondingly Oy(x*)/0b, would be negative, i.e., as b; increases, y(x*) could decrease.

Therefore, if Oy(x*)/0b, is negative, then the Lagrange multiplier, i, must be positive for

Equation 2-37 to be satisfied. This condition is called a constraint qualification, as will be
discussed subsequently.

For the sixth condition, it has been shown by Bazaraa and Shetty (15) that the Lagrange
multipliers associated with the equality constraints are unrestricted in sign; and there is not an
argument comparable to the one given above for the Lagrange multipliers associated with the
inequality constraints.

For the problem of maximizing y(x) subject to inequality and equality constraints, the
problem is as follows:

maximize: y(X) (2-46)
subject to: fix)<0 fori=1,2,...h (2-47)
fix)=0 fori=h+1,..,m (2-48)

For this problem the Kuhn-Tucker conditions are:

B0, §, %D, §, B

1. Ox; X S Ox

J forj=1.2....n
2 fix*) <0 fori=1,2,...,h

3. fi(x*) = 0 fori=h+1,2,...,m

(2-49)
4. Aifix*) = 0 fori=1,2,....h
5. i <0 fori=1,2,...,h
6. Ai is unrestricted in sign fori=h+1, 2,..., m

These conditions are the same as the ones for minimizing given by Equation 2-45, except
the inequality is reversed for the Lagrange multipliers in the fifth condition. Also, the inequality
constraints are written as less than or equal to zero for convenience in the subsequent discussion
on sufficient conditions. Inequality constraints that are greater than or equal to zero can be

37



converted to inequality constraints that are less than or equal to zero by multiplying by minus
one (- 1).

The following example illustrates the Kuhn-Tucker necessary conditions for a simple
problem.

Example 2-9

Locate the five Kuhn-Tucker points of the following problem and determine their character, i.e.,
maximum, minimum or saddle point.

optimize: y =X1X2
subject to: X1t x2 <1
-xX1+ x2 <1
-X1- X2 <1
X1- X2 <1

A diagram of the above equations is given in Figure 2-6. The function being optimized is the
classic saddle point function that is constrained by plane.
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Figure 2-6 Diagram of Optimization Problem Given in Example 2-9

The first step in the procedure is to locate the stationary points by ignoring the inequality
constraints, i.e., 4, =1, =A,=A4, = 0. If this point satisfies the constraints as inequalities, an

optimum may have been found. For this problem:

a—yle =0

a_y—x —
2 ox,

ox,
The Kuhn-Tucker point is xo(0, 0), and evaluating its character by the unconstrained sufficiency

conditions gives the following result:

Ty _, Ov_ o’y 'y _
ox; ox3 Ox,0x, 0x,0x,

And applying Equation2-12:
39



The point xo (0, 0) is a saddle point, and the constraints are satisfied.

Proceeding to step two, one constraint equation at a time is selected, and the character of the
Kuhn-Tucker point is determined. Beginning with the first constraint equation as an equality, i.e.

A, #0, and considering the other three as inequalities, 2,= A,=1,= 0, gives the following
equation for the Lagrange function.

L(xi,x2, 1) = xix2+ 2, (x1+x2— 1)

and
a_y:xz-l'ﬂlzo a_y:xl-l-ll:() a_y:xl+x2_1:()
axl axz ze

Solving gives:

X1 =, X2 = 2, A= YA )= Va
The sign of the Lagrange multiplier is negative; and by the Kuhn-Tucker necessary conditions,
the Lagrange multiplier is unrestricted in sign for an equality constraint. The point can be a

maximum since x; and X» are positive, and the other constraint equations are satisfied as
inequalities. The results for the other three points are shown on Figure 2-6
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Constraint Qualifications: In the theorems developed by Kuhn and Tucker (14), the
constraint equations must satisfy certain conditions at the Kuhn-Tucker points, and these
conditions are called constraint qualifications. As given in Bazaraa and Shetty (15) there are
several forms of constraint qualifications; and one according to Gill et. al. (16) is important for
nonlinear constraints. This is the condition that the gradients of the constraint equations at the
Kuhn-Tucker point are linearly independent. This constraint qualification is required for the
necessary conditions given by Equations (2-45) and (2-49). As an example, Kuhn and Tucker
(14) constructed the constraint equations:

f]z(l—X])3—X2 >0
 =x1>0
fi=%x>0

These constraint equations do not satisfy the condition of linear independence at point x;* =
and x2* = 0. At this point Vf, = [-3(1 - x1)? x2] = (0, -1), Vf, =(1,0)and V£, =(0, 1) are
not linearly independent. At such a point as this one the necessary condition may fail to hold,
and Kuhn and Tucker (14) give arguments that this constraint qualification is required to ensure
the existence of the Lagrange multipliers at the optimum point. Verification of the constraint
qualifications for a general nonlinear programming problem is almost an impossible task
according to Avriel (10). He states that fortunately in practice constraint qualification usually
holds, and it is justifiable to use the existence of the Lagrange Multipliers as a basis for having
the necessary conditions hold.

Sufficient Conditions: The same concepts used for unconstrained problems are followed
to develop the sufficient conditions for constrained problems. This involves expanding the
Lagrange function in a Taylor series about the Kuhn-Tucker point located using the necessary
conditions. The Taylor series is simplified by neglecting third and higher order terms to give a
function that contains only terms involving second partial derivatives evaluated at the Kuhn-
Tucker point. This gives a differential quadratic form, and a test similar to the one for the
unconstrained problem is obtained to determine if the Kuhn-Tucker point is a maximum,
minimum or saddle. The sufficient conditions for the case of both inequality and equality
constraints are more elaborate than if only equality constraints are involved. We have space to
give only the appropriate theorems and describe their development and use. Further details are
given by Avriel (10), Bazaraa and Shetty (15) and Reklaitis, et al., (17).

Considering the case of only equality constraints first, the Lagrange function for n
independent variables and m equality constraint equations is given by the following equation.

LxA) = y0+ 34, fi(x) (2-50)

Expanding the Lagrange function in a Taylor series about the Kuhn-Tucker point x* gives:
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n n

L(x,A)=L(x* 1)+ ZL D =)+ 4 D2 DL (%, A)x, —x #)(x, —x, *) |+(2-51)

i=1 j=1 k=1
higher order terms

This equation is comparable to Equation 2-8, and subscripts x;, X; and xx indicate partial
differentiation with respect to those variables. Again, the first partial derivatives are zero at the
Kuhn-Tucker point by the necessary conditions, and x is selected sufficiently close to x* such
that the higher order terms are negligible when compared to the second order terms. This gives
the following equation which is comparable to Equation 2-9 for the unconstrained case.

L(x,A)=L(x* )+ ) Z ZL (x*, A)x, —x,®)(x, —x,%) (2-52)

j=1 k=1

As previously, we need to determine if the term in the brackets remains positive
(minimum), remains negative (maximum) or changes sign (saddle point) for small feasible
changes in x about x*. The term in the bracket is a differential quadratic form.

To determine if the quadratic form is always positive or always negative, results
comparable to those given by Equation (2-7) are required with the extension that the constraints
also be satisfied, i.e., for feasible values of x. A theorem is given by Avriel (10) establishes
these conditions, and this theorem is then applied to the differential quadratic form of the
Lagrange function. The result, after Avriel (10), is the following theorem for the sufficient
conditions of the optimization problem with only equality constraints. In this theorem the
second partial derivatives of the Lagrange function evaluated at the Kuhn-Tucker point x* are
Lx/_xk (x*, A)are written as Ljk. Also, first partial derivatives of the constraint equations evaluated

at the Kuhn-Tucker point x* are of , (x*)/0x,and are written fi. The theorem states:

Let y(x) and fi(x) = 0, i = 1, 2, ..., m, be twice continuously differentiable real valued functions.
If there exist vectors x* and A *, such that:

Lix* A%) =0, i=1,2..,n
and if:

m L
D, =(-1) >0

£ e fmp 0O --- 0
forp =m+l, .., n, then y(x*) has a strict local minimum at x*, such that:

fitx®) =0, i=12 ..,m
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The proof of this theorem is given by Avriel (10) and follows the discussion of the
concepts given above. The comparable result for a strict maxima is obtained by changing (-1)™
in the above theorem to (-1)P, according to Avriel (10). The following example illustrates the
application of this theorem.

Example 2-10
Consider the following problem.
optimize: X124+ 2x2% +3x32

subject to: X1 +2x2 + 4x3-12 =0
2x1 + X2 + 3x3-10 =0

Forming the Lagrange function and differentiating partially with respect to xi, X2, X3, 41 and A»
gives the following set of equations to be solved for the Kuhn-Tucker point.

L, =2x+2,+24,=0
L =4x,+24+4,=0
L =6x,+44 +34,=0
5 =X +2x,+4x,-12=0

L
L, =2x,+x,+3x;-10=0

Solving the above equation set simultaneously gives the following values for the Kuhn-Tucker
point.

x1 = 112/81, x2 = 118/81, x3 = 52/27, A= -80/27, A=8/81

From the necessary conditions of Equations 2-45 or 2-49 the Lagrange multipliers are
unrestricted in sign, and the value of the determinants from the theorem on sufficiency
conditions is required to determine the character of this point. The partial derivatives needed for
this evaluation are:

L= 2 L2=0 Lz=0
L= 0 L» =4 L =0
L3 =0 Ly =0 L33 =6
fi =1 fio =2 fiz =4
=2 £ =1 fr3 =3

The determinant is m =2, n = 3, p = 3, only one determinant in this case:
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= (-1’ =162

N = OO N
—_ NN O B~ O
W h~h O O O
(e R N
S O W o= N

The value of D3 is positive, and Kuhn-Tucker point is a minimum.

The sufficient conditions for problems with equality and inequality constraints, Equations
(2-41), (2-42) and (2-43), are summarized in the following theorem. There are a number of
mathematical concepts and theorems required to obtain this result. These are given in some
detail by Avriel (10), Bazaraa and Shetty (15) and Reklaitis, e t. al. (17); but it is not feasible to
describe them in the space available here.

Lety(x), fi(x) > 0, i=1, 2, ..., hand fi(x) = 0, i = h+1, ...,m be twice continuously differentiable
real-valued functions. If there exist vectors x* and A* satisfying

oL aytf* ji éV(X*) ﬁiﬂ”@ﬂ(x*)

, =0 j=12,n
axj j =1 j i=h+1 axj

Afix*) = 0 i=12 .. h

4i> 0 i=1,2.,h

and for every z # 0 such that:

. A

i=12,....h
8xj

. 269

i=h+12,....om
5xj

J=

it follows that:

n *
Zza L(x l ) AZk>0
Jj=1 k=1 8)(5

then x* is a strict local minimum.

The following example illustrates the application of this theorem.
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Example 2-11
Consider the following problem after Reklaitis et. al. (17).
minimize: (xi - 1)> + x»?
subject to: - x; +x22>0
Applying the theorem gives:
2xi-1)+4 =0
2X2 —2x2 A =0
A(-x1 +X22) =0
A >0

Solving this set of equations gives x1 = 0, xo = 0, A = 2 for the Kuhn-Tucker point. Then
applying the sufficient conditions gives the following results at x* = (0,0).

22]2 — 2222 >0

However, for all finite values of z (zi, z) the above inequalities cannot be satisfied, and the
second order sufficiency conditions show that the point is not a minimum.

In summary, the necessary and sufficient conditions for nonlinear programming problems
have been described and illustrated with examples. References have been given for more details
for this theory.

An important special case is when the economic model is concave, and all of the
constraint equation are convex and are inequalities. This is known as convex programming. "A
function is concave if linear interpolation between its values at any two points of definition
yields a value not greater than its actual value at the point of interpolation; such a function is the
negative of a convex function" according to Kuhn and Tucker (14). Thus, the convex
programming problem can be stated as follows.

maximize: y(X) (2-53)
subjectto: fi(x) <0 fori=1,2,..,m (2-54)

The necessary and sufficient conditions for the maximum of concave function y(x) subject to
convex constraints fi(x) <0,1=1, 2, ..., m are the Kuhn Tucker conditions given below as:
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OL(x*, 1*)
ox

J

2. A1(x%=0 i=12,..,m

=0 j=12,...n

(2-55)
3 A, <0 i=12,....,m
4. f;(x*)<0 i=12,...m
The theorem from Cooper (7) that establishes the above result is:
If y(x) is a strictly concave function and fi(x), i = 1, 2, ..., m are convex functions which are

continuous and differentiable, then the Kuhn-Tucker conditions, Equation 2-49, are sufficient as
well as necessary for a global maximum.

The proof of this theorem uses the definition of convex and concave functions and the fact that
the Lagrange function can be formulated as the sum of concave functions that is concave.

These concepts and results for the Kuhn-Tucker conditions and those given previously
will be valuable in our discussion of modern optimization procedures in the following chapters.
Those interested in further theoretical results are referred to the references at the end of this
chapter and Chapter 6. Also, in industrial practice we will see that the concepts from the Kuhn-
Tucker conditions are used in computer programs for advanced multivariable search methods to
optimize economic and process models that are too elaborate for the algebraic manipulations
required to use these theories directly.

Closure

In the chapter we have discussed the necessary and sufficient conditions to evaluate the
character of stationary points for unconstrained and constrained optimization problems. It was
necessary to confine the illustration of these procedures to simple algebraic models. Even
though we are not able to apply these procedures directly to the optimization of industrial
processes, the concepts developed in this chapter are used many times over in the following
chapters.

It is worthwhile to attempt to solve the following unconstrained economic model from
the design of horizontal vapor condensers in evaporators used in water desalination plants to see

one of the major limitations of the classical theory of maxima and minima. The problem is to
minimize the cost given by the following equation.

C=aN""*D'L4 +bN-2D* L™ +¢NDL+dN "D *L (2-56)
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In this equation the cost is in dollars per year; N is the number of tubes in the condenser; D is the
nominal diameter of the tubes in inches; L is the tube length in feet; and a, b, c, and d are
coefficients that vary with the fluids involved and the construction costs. Avriel and Wilde (18)
give further details about the significance of each term. This equation is typical of the form that
is obtained from assembling correlations of equipment costs and related process operating
conditions for preliminary cost estimates.

Differentiating this equation with respect to the three independent variables N, D, and L,
and setting the results equal to zero gives the following three equations to be solved for the
values of N, D, and L that would give the minimum cost.

(-7a/6)N D 'L + (-020)N“D**L ™" + ¢DL + (-1.8d)N D L =0
aN " *DP L™ + 08N DL + ¢NL + (48N DL =0 (2-57)

('43/3)N77/6 D—z L—7/5 _ Nfo..z Do.s L—z +cND +del.8D—4.8 -0

There is no straightforward way to solve this relatively complicated set of three nonlinear
algebraic equations other than numerically with a root-finding procedure at this point. This then
illustrates one on the major limitations with classical methods, i.e., if the variables in the
economic model have fractional exponents, then a set of nonlinear algebraic equations are
obtained that will probably require an iterative solution using a computer. However, as will be
seen in the chapter on geometric programming, we will be able to obtain the optimal solution for
this economic model by solving a set of linear algebraic equations. We will take advantage of
the mathematical structure of the problems to be able to find the optimum readily. In fact, this
will be true of most of the modern methods; they take advantage of the mathematical structure of
the optimization problem to quickly find the best values of the independent variables and the
maximum profit or minimum cost.
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Problems

2-1.  Locate the stationary points of the following functions and determine their character.
a. y = x¥2 - x*2
b. y = x’
C y = xi2 + xix2 + X2
d y = 2x1% + 3x22 + 4x3% - 8x1 - 12x2 - 24x3 + 110

2-2.  Find the global maximum of the function
y(x1, x2) = 5(x1-3)? - 12(x2 +5)* + 6x1x2

X| 10

X2

in the region 0
0

INIA
IAIA

2-3.  Use the Jacobian determinants and obtain the two equations to be solved with the
constraint equation for the following problem

optimize: y(X1, X2, X3)
subject to: f(x1, X2, x3) =0

2-4.  Solve the following problem by the method of constrained variation and the method of
Lagrange multipliers, evaluating xi, x2 and the Lagrange multiplier A at the optimum.

maximize: X1 + X2
subjectto:  xi? + x2? = 1

2-5.  Solve the following problem by the method of Lagrange multipliers and give the
character of the stationary point.

minimize: 2x1% - 4x1%0 + 4%x22 + X1 - 3%2
subject to: 10x; +5x2 <3
2-6.  Consider the following problem
optimize: -x12 - 2x1 + x22
subject to: x12+x22-1<0
a. Obtain the equation set to be solved to locate the stationary points of the above problem using

the method of Lagrange multipliers. Convert the inequality constraint to an equality constraint
with the slack variable x3 as x3%; why?
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b. Show that the following are solutions to the algebraic equations obtained in part (a).

Stationary Points
A B C D
X| - -Ya -1 1
x 32 ~N3)2 0 0
X3 0 0 0 0
A -1 -1 0 2

c. Based on the value of the function being optimized state whether stationary points A through
D are maximum, minimum or saddle points.

2-7. The cost of operation of a continuous, stirred-tank reactor is given by the following
equation:

CT :Cf CAoq + CmV

The total operating cost Cr ($/hr) is the sum of the cost of the feed, Cr cao g, and the cost of
mixing, CnV. The following gives the values for the reactor.

Cr = $5.00/Ib-mole of A, cost of feed

cao = 0.04 Ib-mole/ft3, initial concentration of A.

q = volumetric flow rate of feed to the reactor in ft3/hr.
Cm = $0.30/hr-ft3, cost of mixing

V = volume of reactor in ft

We are interested in obtaining the minimum total operating cost and the optimal values of the
feed rate, q; reactor volume, V; and concentration in the reactor, ca. The following first order
reaction takes place in the reactor.

A—B
where the rate of formation of B, r, is given by

= kca
where k= 0.1 hr'!.
a. If 10 Ib-moles per hour of B are to be produced, give the two material balance constraint
equations which restrict the values of the independent variables. (There is no B in the feed
stream.)
b. Form the Lagrange function and perform the appropriate differentiation to obtain the set

of equations that would be solved for the optimal values of the independent variables. How
many equations and variables are obtained?
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c. Solve for the optimal values of the reactor volume, V; feed rate, q; and concentration of
A in the product, ca.

2-8.  Solve the following problem by the method of Lagrange multipliers, and determine the
character of the stationary point.

optimize: 2x12 + 2x1X2 + X22 - 20%; - 14x»
subject to: x1+3x2<5
2X1 - X2 <4

2-9.°  Solve the following problem by the method of Lagrange multipliers, and determine the
character of the stationary point:

optimize: (1/3)x1 + x2
subject to: -x1+tx2<0
X1 +x2<3

2-10. The total feed rate to three chemical reactors in parallel is 1100 pounds per hour. Each
reactor is operating with a different catalyst and conditions of temperature and pressure. The
profit function for each reactor has the feed rate as the independent variable, and the parameters
in the equation are determined by the catalyst and operating conditions. The profit functions for
each reactor are given below:

P, = 0.2F; - 2(F1/100)*

P2 = 0.2F; - 4(F2/100)?

P3 = 0.2F3 - 6(F3/100)?

Determine the maximum profit and the optimal feed rate to each reactor.

2-11. Solve the following problem by the method of Lagrange multipliers and determine the
character of the stationary points.

maximize: 3x12 + 2x22
subjectto:  xi?+x2? < 25

Ox; - X2 < 27
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2-12. Find the stationary points of the following problem, and determine their character, i.e.,
maximum, minimum or saddle point.

optimize: 2x12 + X2 - 5x1 - 4%
subject to: x1+3x2 <5
2X1-X2 < 4

2-13. The rate of return (ROR) is defined as the interest rate where the net present value (NPV)
is zero for a specified number of years, n, and initial cash flow CFo which is negative. This can
be formulated as an optimization problem as follows:

minimize: (NPV)?

For the case of constant cash flows, CF; = A, develop the equation to determine the rate of return.
The net present value is given by the following equation.

NPV = -CFy + A[l-(i+1)"/i

2-14. Derive the Lagrange function for n independent variables and m constraint equations,
Equation 2-24. Begin by multiplying the constraint equations given in Equation (2-19) by
Lagrange multipliers 41, A2, ..., Am. Then add all of the equations, rearrange terms and obtain the
result as Equation 2-24.

2-15. For sufficient conditions of the equality constraint problem to determine if the quadratic
form is positive or negative definite, the signs of the roots of a polynomial can be evaluated.
This characteristic polynomial is obtained by evaluating the following determinant which
includes the second partial derivatives of the Lagrange function evaluated at the Kuhn-Tucker

points, L_ . (x*, A)written as Ljx for simplicity, and the first partial derivative of the constraint
J

equations evaluated at the Kuhn-Tucker point, afj (x*)/ Ox, written as fj for simplicity.

L—a L, L, i S

Ly Ly—a L, S Sz

P(Cl) = Lnl LnZ le —a -ﬂn fmn
ﬁl ﬁz ﬁn O 0

fml fm2 fmn 0 0

The following results are used to evaluate the type of stationary points. First, evaluate the roots
of P(a) using the above equation.
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If each root of P(a) is positive, then x* is a maximum.

If each root of P(a) is negative, then x* is a minimum.

If the roots are of mixed sign, then x* is a saddle point.

Use the results given in Example 2-10 in the above determinant and confirm the character of the

Kuhn-Tucker point by this method. (There is a comparable sufficient condition test for the
unconstrained problem which is described by Sivazlian and Stanfel (9).)
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