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Chapter 2 
CLASSICAL THEORY OF MAXIMA AND MINIMA 

 
Introduction 
 
 The classical theory of maxima and minima (analytical methods) is concerned with 
finding the maxima or minima, i.e., extreme points of a function.  We seek to determine the 
values of the n independent variables x1, x2 ... xn of a function where it reaches maxima and 
minima points.  Before starting with the development of the mathematics to locate these extreme 
points of a function, let us examine the surface of a function of two independent variables, y(x1, 
x2), that could represent the economic model of a process. This should help visualize the location 
of the extreme points.  An economic model is illustrated in Figure 2-1a where the contours of the 
function are represented by the curved lines.  A cross section of the function along line S through 
the points A and B is shown in Figure 2-1(b), and in Figure 2-1(c) the first derivative of y(x1, x2) 
along line S through points A and B is given.  
 
 In this example, point A is the global maximum in the region and is located at the top of a 
sharp ridge.  Here the first derivative is discontinuous.  A second but smaller maximum is 
located at point B (a local maximum).  At point B the first partial derivatives of y(x1, x2) are 
zero, and B is called a stationary point.  It is not necessary for stationary points to be maxima or 
minima as illustrated by stationary point C, a saddle point.  In this example, the minima do not 
occur in the interior of the region but on the boundary at points D and E (local minima). To 
determine the global minima, it is necessary to compare the value of the function at these points. 
 
 In essence, the problem of determining the maximum profit or minimum cost for a 
system using the classical theory becomes one of locating all of the local maxima or minima, and 
then comparing the individual values, to determine the global maximum or minimum.  The 
example has illustrated the places to look that are:  
 
 1.   at stationary points (first derivatives are zero)  
 
 2.   on the boundaries  
 
 3.   at discontinuities in the first derivative  
 
 
 When the function and its derivatives are continuous, the local extreme points will occur 
at stationary points in the interior of the region.  However, it is not necessary that all stationary 
points be local extreme points since saddle points can occur, also. 
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Locating Local Maxima and Minima (Necessary Conditions) 
 
 Using geometric intuition from the previous example, we can understand the famous 
Weierstrass theorem (11, 12), which guarantees the existence of maxima and minima.  It states:  
  
Every function that is continuous in a closed domain possesses a maximum and a minimum value 
either in the interior or on the boundary of the domain. 
 
The proof is by contradiction.  
 
 There is another theorem (13) which tells how to locate extreme points in the interior of a 
region of a continuous function.  It states: 
 
A continuous function of n variables attains a maximum or a minimum in the interior of a region, 
only at those values of the variables for which the n partial derivatives either vanish 
simultaneously (stationary points) or at which one or more of these derivatives cease to exist 
(i.e., are discontinuous). 
 
The proof involves examining the Taylor Series expansion at the points where the partial 
derivatives either vanish or cease to exist. 
 
 Thus, the problem becomes one of locating points where the partial derivatives are zero 
or where some of them are discontinuous.  The stationary points can be located by solving the 
algebraic equations which result in setting the partial derivatives of the function equal to zero.  
Also, these algebraic equations must be examined for points of discontinuities, and this has to be 
accomplished by inspection.  
 
Evaluating Local Maxima and Minima (Sufficient Conditions)  
 
 As we have seen, it is not necessary for all stationary points to be local maxima and 
minima, since there is a possibility of saddle or inflection points.  Now we need to develop 
procedures to determine if stationary points are maxima or minima.  These sufficient conditions 
will be developed for one independent variable first and then extended for two and n independent 
variables, using the same concepts.  Once the local maxima and minima are located, it is 
necessary to compare the individual points to locate the global maximum and minimum.  
 
Sufficient Conditions for One Independent Variable 
  
 To develop criteria establishing whether a stationary point is a local maximum or 
minimum, we begin by performing a Taylor series expansion about the stationary point x0.  
 
 y(x)  =  y(x0) + y'(x0) (x – x0) + ½ y''(x0) (x – x0)2 + higher order terms  (2-1) 
 
 Now, select x sufficiently close to x0 so the higher order terms become negligible 
compared to the second order terms.  Since the first derivative is zero at the stationary point, the 
above equation becomes  
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                                          y(x) = y(x0) + ½ y"(x0) (x – x0)2      (2-2) 
   
 We can determine if x0 is a local maximum or minimum by examining the value of y"(x0) 
since (x – x0)2 is always positive. If y"(x0) is positive, then the terms ½y"(x0) (x – x0)2 will 
always add to y(x0) in Equation (2-2) for x taking on values that are less than or greater than x0.  
For this case y(x0) is a local minimum.  This is summarized in the following: 
  
   
     If   y''(x0) > 0   then y(x0) is a minimum 
 
    y''(x0) < 0    y(x0) is a maximum 
 
    y''(x0) = 0    no statement can be made 
  
 
 If the second derivative is zero, it is necessary to examine higher order derivatives. In 
general if y''(x0) = ... = y(n - 1)(x0)= 0, the Taylor series expansion becomes: 
 
                                    y(x) = y(x0) +(1/n!) y(n)(x0) (x – x0)n     (2-3) 
 
 If n is even, then (x – x0)n is always positive, and the result is:  
           
    If  y(n)(x0) > 0    then y(x0) is a minimum 
 
    y(n)(x0) < 0    y(x0) is a maximum 
  
 If n is odd, then (x – x0)n changes sign as x moves from x < x0 to x > x0, and thus there is 
an inflection point.  These results can be summarized in the following theorem (1). 
 
If at a stationary point the first and possibly some of the higher derivatives vanish, then the point 
is or is not an extreme point, according as the first non-vanishing derivative is of even or odd 
order.  If it is even, there is a maximum or minimum according as the derivative is negative or 
positive.  
 
 The proof of this theorem follows the discussion given above.  The following example 
illustrates the principles discussed.  
 
Example 2-1  
 
 Locate the extreme points of the following two functions: 
 
 a. y(x) = x4/4 – x2/2 
 
  y'(x) = x3 – x = x(x2 – 1) = x(x – 1)(x+1) = 0 
 
 Stationary points are x = (0, 1, -1) 



 13 

  
  y"(x) = 3x2 - 1  
 
  y"(0) = -1      maximum  
  y"(1) =  2      minimum  
  y"(-1) =  2      minimum  
 
 b.  y(x) = x5  
 
   y'(x) =  5x4 = 0 stationary point is x = 0  
   y"(x) = 20x3    y"(0)   = 0 
   y"'(x) = 60x2   y"'(0) = 0  no statement can be made 
   yiv(x)  = 120x   yiv(0) = 0 
   yv(x)  = 120    yv(0) = 120  n is odd, and the stationary    
       point is an inflection point. 
 
Sufficient Conditions for Two Independent Variables 
  
 To develop the criteria for a local maximum or minimum for x0 (x10, x20), a stationary 
point for a function of two variables, a Taylor's series expansion is made about this point.  
 
  y(x1, x2) = y(x10, x20) + yx1(x1-x10) + yx2(x2-x20)   
 
   + ½[yx1x1(x1-x10)2 + 2yx1x2(x1-x10)(x2-x20)    (2-4) 
            
        + yx2x2(x2-x20)2] + higher order terms  
          
where the subscripts x1 and x2 indicate partial differentiation with respect to those variables and 
evaluation at the stationary point.  
 
 Again we select y(x1, x2) sufficiently close to y(x10, x20), so the higher order terms 
become negligible compared to the second-order terms.  Also, the first derivatives are zero at the 
stationary point.  Thus, Equation (2-4) can be written in matrix form as: 
 

     (2-5) 
       
 In matrix-vector notation, Equation 2-5 can be written as: 
 
                                  y(x) = y(x0) + ½[(x – x0)H0(x – x0)]     (2-6) 
 
where H0 is the matrix of second partial derivatives evaluated at the stationary point x0 and is 
called the Hessian matrix.  
 

ú
û

ù
ê
ë

é
-
-

ú
û

ù
ê
ë

é
--+

-+-+=

)(
)(

)()(

)()(),(),(

202

101
2021012

1

202101201021

2212

1211

21

xx
xx

yy
yy

xxxx

xxyxxyxxyxxy

xxxx

xxxx

xx



 14 

  The term in the bracket of Equation (2-6) is called a differential quadratic form, and y(x0) 
will be a minimum or a maximum accordingly if this term is always positive or always negative.  
Based on this concept, it can be shown (1) that if the following results apply, x0 is a maximum or 
a minimum.  If they do not hold, x0 could be a saddle point and is not a maximum or a minimum. 
 

   

 

   

   
 An illustration of the above results is given in Example 2-2.  The term in the bracket of 
Equation (2-6) is an example of a quadratic form. It will be necessary to describe a quadratic 
form briefly before giving the sufficient conditions for maxima and minima for n independent 
variables.   
 
Sign of a Quadratic Form 
 
 To perform a similar analysis for a function with more than two independent variables, it 
is necessary to determine what is called the sign of the quadratic form.  The general quadratic 
form (1) is written as: 
 

        (2-7) 

 
where aij are the components of symmetric matrix A, and aij = aji. 
         
 It turns out (1) that we can determine if Q is always positive or always negative, for all 
finite values of xi and xj, by evaluating the signs of Di, the determinants of the principal sub-
matrices of A:    

         (2-8) 

 
 The important results that will be used subsequently are: 
 
 If Di  > 0  for i = 1, 2, ...n, then: A is positive definite, and Q(A, x) > 0 
 
 If Di  < 0  for i = 1, 3, ..., and 
         Di  > 0  for i = 2, 4, ..., then: A is negative definite and Q(A, x) < 0 
 
 If Di is neither of these, then Q(A, x) and depends on the values of xi and xj.  
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Sufficient Conditions for n Independent Variables 
 
 The result of the previous two sections can be extended to the case of n independent 
variables by considering the Taylor series expansion for n independent variables around 
stationary point x0:  
         

 

            (2-9)   
 
 Again, select x sufficiently close to x0 so the higher order terms become negligible 
compared to the second-order terms.  Also, the first derivatives are zero at the stationary point.  
Thus, Equation (2-9) can be written in matrix-vector notation as: 
 
                                   y(x) = y(x0) + ½(x – x0)T H0 (x - x0)     (2-10) 
 
where x is the column vector of independent variables and H0, the matrix of second partial 
derivative evaluated at the stationary point x0, in the Hessian matrix.  This is the same equation 
as Equation (2-6) which was written for two independent variables. 
           
 The second term on the right hand side of Equation (2-10) is called a differential 
quadratic form as shown below  
 
                                      Q[H0, (x - x0)] = (x - x0)T H0 (x - x0)     (2-11) 
 
 Equation (2-11) corresponds to Equation (2-7) in the previous section, and the 
determinants of the principal sub-matrices of H0 as defined below correspond to Equation (2-8).   
 

         (2-12) 

 
 We can now use the same procedure in evaluating the character of the stationary points 
for n independent variables.  For example, if the term containing the Hessian matrix is always 
positive for perturbations of the independent variables around the stationary point, then the 
stationary point is a local minimum.  For this differential quadratic form to be positive always, 
then Hi0  > 0 for i = 1, 2, … n. The same reasoning can be applied for a local maximum, and the 
results for these two cases are summarized below. 
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   y(x0) is a minimum if  Hi0  > 0  for i = 1, 2, ..., n 
    
   y(x0) is a maximum if Hi0  < 0  for i = 1, 3, 5, ...    
      Hi0  > 0        i = 2, 4, 6, ... 
 
 If zeros occur in the place of some of the positive or negative number in the tests above 
(semi-definite quadratic form), then there is insufficient information to determine the character 
of the stationary point (1).  As discussed in Avriel (10) higher order terms may have to be 
examined, or local exploration can be performed.  If the test is not met (indefinite quadratic 
form), then the point is neither a maximum nor minimum (1). The following theorem from 
Cooper (7) summarizes these results.  It states: 
 
If y(x) and its first two partial derivatives are continuous, then a sufficient condition for y(x) to 
have a relative minimum (or maximum) at x0, when , j = 1, 2, ... .n, is that 
Hessian matrix be positive definite (negative definite). 
 
The proof of this theorem employs arguments similar to those given above. 
  
 The following example illustrates these methods. 
 
Example 2-2 
 
 The flow diagram of a simple process is shown in Figure 2-2 (2) where the hydrocarbon 
feed is mixed with recycle and compressed before being passed into a catalytic reactor.  The 
product and unreacted material are separated by distillation, and the unreacted material is 
recycled.  The pressure, P, in psi and recycle ratio, R, must be selected to minimize the total 
annual cost for the required production rate of 107 pounds per year.  The feed is brought up to 
pressure at an annual cost of $1000P, mixed with the recycle stream and fed to the reactor at an 
annual cost of $4 x 109/PR.  The product is removed in a separator at a cost of $105R per year 
and the unreacted material is recycled in a recirculating compressor which consumes $1.5 x 105R 
annually.  Determine the optimal operating pressure, recycle ratio, and total annual cost; and 
show that the cost is a minimum. 
 
Solution:  The equation giving the total operating cost is: 
 
   C ($/yr.) = 1000P + 4 x 109/PR + 2.5 x 105R 
 
Equating the partial derivatives of C with respect P and R to zero gives two algebraic equations 
to be solved for P and R. 
 
    
 
    
 
Solving simultaneously gives: 
    

0/)( 0 =¶¶ jxxy

0/1041000/ 29 =×-=¶¶ RPPC

0/104105.2/ 295 =×-×=¶¶ PRRC
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P = 1000psi and R = 4 
 
Substituting to determine the corresponding total operating cost gives: 
 
   C = $ 3 x 106 per year 
 
C (P, R) is a minimum if: 
 

    

 
 Performing the appropriate partial differentiation and evaluation at the stationary point  
(P = 1000, R = 4) gives: 
 
 

     

 
Thus, the stationary point is a minimum since both determinants are positive. 
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Analytical Methods Applicable for Constraints 
 
 To this point independent variables could take on any value. In actuality, the values of the 
independent variables are limited, because they usually represent physical quantities such a flow 
rates, temperatures, pressures, process unit, capacities and available resources.  Consequently, 
there are constraints on variables, if nothing more than the fact that they must be nonnegative.  In 
many cases they are bounded within limits as dictated by the process equipment and related by 
equations such as material balances.  The constraints on the variables can be of the form of 
equations and inequalities. 
 
 Methods to locate the stationary points of functions (economic models) subject to 
equality constraints (e.g., material and energy balance equations) will be developed, and 
examples illustrating the techniques will be given.  Inequality constraints can be converted to 
equality constraints, and then these procedures for equality constraints can be applied with some 
additional considerations. 
 
 Let us illustrate the conversion of an inequality constraint to an equality constraint using 
a simple example to help visualize the concept of slack variables.  In Figure 2-3 an example is 
given of an equality and an inequality constraint for a distillation column.  The material balance 
that says that the feed rate to the column must equal the sum of the overhead and bottom 
products at steady state is the quality constraint, F – (O + B) = 0. The upper limit on the capacity 
of the distillation column, which was set when the equipment was designed, is the inequality 
constraint, F < 50,000. This inequality constraint can be converted to an equality constraint by 
adding a slack variable S as S2 to ensure a positive number has been added to the equation. 
 
                                               F + S  = 50,000      (2-13) 
 
 The term slack is used to represent the difference between the optimal and upper limit on 
the capacity.  It represents the unused, excess, or slack in capacity of the process unit.  For 
example, if Fopt = 30,000 barrels per day; then S2 = 20,000 barrels per day, a slack of 20,000 
barrels per day; and the constraint is said to be loose i.e., the inequality holds.  If Fopt = 50,000 
barrels per day then there is no slack, and the constraint is said to be tight the equality holds.  
This will be discussed in more detail later in the chapter.  Also, if there was a lower limit on F, 
e.g., F ≥ 10,000, the same procedure would apply except S2 would be subtracted from F.  The 
equation would be F - S2 = 10,000, and S is called a surplus variable. 
 
 We can now state a general optimization problem with n independent variables and m 
equality constraints where the objective is to optimize (maximize or minimize) the economic 
model y(x) subject to m constraint equations fi (x). 
 
                         optimize:   y(x1, x2,...xn)       (2-14) 
 
                         subject to:  fi (x1, x2,...,xn) = 0  for i = 1, 2, ...m  (2-15) 

2
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 There must be fewer equality constraints than independent variables to be able to 
optimize y(x), i.e., n > m.  If m = n the values of the xj's are uniquely determined, and there is no 
optimization problem.  Also, if m > n the problem is said to be over-determined since there are 
more equations than unknowns.  There is no optimization problem for this case either. 
 
 There are three methods of locating the optimum points of the function y(x1, x2, ..., xn) of 
n independent variables subject to m constraint equations fi(x1, x2, ..., xn) = 0.  These are:  direct 
substitution, solution by constrained variation and method of Lagrange multipliers.  We will find 
that direct substitution cannot always be used, and the method of Lagrange multipliers will be the 
one most frequently employed. 
 
Direct Substitution 
 
 This simply means to solve the constraint equations for the independent variables and to 
substitute the constraint equations directly into the function to be optimized.  This will give an 
equation (economic model) with (n-m) unknowns, and the previous techniques for unconstrained 
optimization are applicable. 
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 Unfortunately, it is not always possible to perform the algebraic manipulations required 
for these substitutions when the constraint equations are somewhat complicated.  Consequently, 
it is necessary to resort to the following methods. 
 
Constrained Variation 
 
 This method (3, 14) is used infrequently but furnishes a theoretical basis for important 
multivariable numerical search methods such as the generalized reduced gradient.  It is best 
illustrated for the case of two independent variables by considering the example shown in Figure 
2-4.  There is a local minimum of the constrained system at point A and a local maximum at 
point B.  The maximum of the unconstrained system is at C. 
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 At point A the curve y(x1, x2) = 1 and the curve f(x1, x2) = 0 are tangent and have the 
same slope.  This means that differential changes, dx1 and dx2, produce the same change in the 
dependent variables y(x1, x2) and f(x1, x2).  This can be expressed as:  
 
                                                    
                   (2-16) 
 
  
 
We will need the total derivatives of y and f to combine with Equation (2-16) to obtain the final 
result.  Using the first terms in a Taylor series expansion for y and f gives: 
 
 

         (2-17) 
 
At the minimum, point A, and the maximum, point B, dy is equal to zero; and the constraint is 
satisfied, i.e., f = 0 and df = 0. 
 
 Combining equations (2-16) and (2-17) gives the following result.  
 

         (2-18) 
    
 This is an algebraic equation, and it is to be solved in combination with the constraint 
equation to locate the stationary points.  It should be remembered in this case that ,

, and are not necessarily zero at Points A and B.  In the unconstrained case at 
point C, ,  are zero, however. 
 
 This technique is illustrated with the following example.  Then the extension to the 
general case for n independent variables will be given. 
 
Example 2-3  
 
Find the stationary points of the following function using the method of constrained variation. 
 
   optimize: y(x) = x1x2 
 
   subject to: f(x) = x12 + x22 –1 = 0 
 
 The first partial derivatives are: 
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Substituting into Equation (2-18) gives 
 
  x2•2x2 – x1•2x1  =  0 or  x22  -  x12  =  0 
 
This equation is solved simultaneously with the constraint equation. 
 
   x12 + x22 –1 = 0 
 
The result is: 
 
   x1  =   + (½)½      and    x2 = + (½)½ 
 
for the values of the independent variables at the stationary points 
  
 In general, we are interested in finding the stationary points of a function y(x1, x2, ..., xn) 
subject to m constraint equations fi(x1, x2, ..., xn) = 0 where i = 1, ... m, and n > m.  The same 
reasoning applied in (n + 1) dimensional space as applied to the three-dimensional space above, 
and these results in the following equations: 
             
 
 
            (2-19) 
  
 
 
    
  
 
 The set of equations given in Equation (2-19) above can be solved for (n - m) equations 
to go with the m constraint equations to locate the stationary points.  The (n - m) equations 
corresponding to Equation (2-18) of the two independent variable case can be written in terms of 
(n - m) Jacobian determinants which are: 
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The Jacobian determinant for the first equation above is:  
          
 
 
 
            (2-21) 
  
 
 
 
 
 
A total of n equations are solved for the stationary points, i.e., the (n - m) equation generated by 
Equation (2-20) above and the m constraint equations.  A derivation of these results is given by 
Beveridge and Schechter (6).  This involves using Cramer's rule and eliminating the dxi's.  Also, 
similar results are given for this general case in the text by Wilde and Beightler (4).  However, a 
different nomenclature is used, and the results are extended to include Lagrange multipliers. 
 
 To illustrate the use of the Jacobian determinants, consider the following example, which 
obtains Equation (2-18). 
 
Example 2-4 
   optimize: y(x1, x2) 
 
   subject to: f(x1, x2) = 0 
 
For this problem there are 2 independent variables (n = 2) and one constraint (m = 1), so the 
evaluation of one Jacobian determinant is required.  
  
 
 
 
 
 
Expanding gives the following equation, gives: 
 

               
 
This is the same as Equation (2-18) that was solved with the constraint equation for the 
stationary point values of x1 and x2 in Example 2-3. 
 
Lagrange Multipliers 
 
 The most frequently used method for constraints is to employ Lagrange multipliers.  The 
technique is presented using two independent variables and one constraint equation to illustrate 
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the concepts.  Then the procedure will be extended to the general case of n independent variables 
and m constraint equation.  For the case of two independent variables we have:   
    
   optimize: y(x1, x2)      
            (2-22) 
   subject to: f(x1, x2)  =  0 
 
 We want to show how the Lagrange multiplier arises and that the constrained problem 
can be converted into an unconstrained problem.  The profit function and the constraint equation 
are expanded in a Taylor series.  Then, using the first order terms gives:  
 
 
 
 
 
 
 
 
This form of the constraint equation will be used to eliminate dx2 in the profit function.  Solving 
for dx2 using the Taylor series for the constraint equation gives: 
     
 
 
 
 
 
 
This equation is substituted into the equation for dy to obtain:     
 
 
 
 
 
 
 
 
and rearranging gives:  
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Now we can define  as the value of at the stationary point of the 
constrained function.  This ratio of partial derivatives  is a constant at the stationary point, and 
the above equation can be written as: 
 
    
 
  
 
 
or 
 
 
 
 
At a stationary point dy = 0, and this leads to:  
 
 
 
 
Now, if L is defined as L = y + f, the above gives: 
 
 
 
 
This is one of the necessary conditions to locate the stationary points of an unconstrained 
function L which is constructed from the profit function y(x1, x2) and the constraint equation 
 f(x1, x2) = 0.   
 
 Now the same manipulations can be repeated except using the constraint equation to 
eliminate dx1 from the profit function and defining  as the value of .  
Then using the results from constrained variations, Equation 2-18, to show that the two values 
defined for are equal, the other necessary condition is obtained to locate the stationary points 
of an unconstrained function L. 
  
 
 
 
 
 Therefore, the constrained problem can be converted to an unconstrained problem by 
forming the Lagrange or augmented, function, L, and solving this problem by the previously 
developed methods of setting the first partial derivatives equal to zero.  This will give two 
equations to solve for the three unknowns x1, x2, and  at the stationary point.  The third 
equation to be used is the constraint equation.  In fact, the Lagrange multiplier is sometimes 
treated as another variable since gives the constraint equation.  The example used for 
the method of constrained variation will be used to illustrate these ideas. 
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Example 2-5:  
 
Find the stationary points for the following constrained problem using the method of Lagrange 
multipliers 
   optimize:   y(x) = x1x2 
 
   subject to:  f(x) = x12 +  x22 – 1  = 0 
 
The Lagrange, or augmented, function is formed as shown below. 
 
    L(x1, x2, )  =  x1x2 + (x12 + x22 – 1) 
 
The following equations are obtained from setting the first partial derivatives equal to zero 
 
    =  x2 + 2 x1 = 0 
 
    = x1 + 2 x2 = 0 
 
    = x12 +  x22 – 1 = 0 
 
Solving the previous equations simultaneously gives the following stationary points: 
 
   maxima: x1 =   (½)½, x2 =   (½)½,  = - ½ 
       x1 = - (½)½, x2 = - (½)½,  = - ½ 
 
   minima: x1 =    (½)½, x2 = -(½)½ ,  =    ½ 
       x1 = - (½)½, x2  =  (½)½,   =    ½ 
 
 The types of stationary points, i.e., maxima, minima or saddle points were determined by 
inspection for this problem.  Sufficient conditions for constrained problems will be discussed 
subsequently in this chapter. 
 
 The development of the Lagrange function of the case of n independent variables and m 
constraint equations is a direct extension from that of two independent variables and one 
constraint equation, and Avriel (10) gives a concise derivation of this result.  (See problem 2-14).  
The Lagrange or augmented, function is formed as previously, and for every constraint equation 
there is a Lagrange multiplier.  This is shown below: 
 
                        optimize:         y(x)                 x = (x1, x2, ..., xn)T      
            (2-23) 
  subject to: fi(x) = 0 for i = 1, 2, ..., m where n > m 
 
The Lagrange, or augmented, function is formed from the constrained problem as follows: 
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        (2-24)                          

 
To locate the stationary points of the constrained problem, the first partial derivatives of the 
Lagrange function with respect to the xj's and 's are set equal to zero (necessary conditions).  
There are (n + m) equations to be solved for the (n + m) unknowns:  n  xj's and m  's 
 
 It is sometimes said that the method of Lagrange multipliers requires more work than the 
method of constrained variation since an additional m equations have to be solved for the values 
of the Lagrange multipliers.  However, additional and valuable information is obtained from 
knowing the values of the Lagrange multipliers, as will be seen.  The following simple example 
gives a comparison among the three techniques. 
 
Example 2-6   
 
For the process in Example 2-1 (2) it is necessary to maintain the product of the pressure and 
recycle ratio equal to 9000 psi.  Determine the optimal values of the pressure and recycle ration 
and minimum cost within this constraint by direct substitution, constrained variation and 
Lagrange multipliers. 
 
Again, the problem is to minimize C. 
 
    C = 1000P + 4 • 109/PR + 2.5 • 105R 
 
However, C is subject to the following constraint equation. 
     
    PR = 9000 
 
Direct Substitution:  Solving the constraint above for P and substituting into the objective 
function gives: 
    C = 9 x 106/R + (4/9) • 106 + 2.5 • 105R 
 
Setting dC/dR = 0 and solving gives: 
 
    R = 6 and P = 1500 psi. 
 
The corresponding cost is: 
    C = 3.44 • 106  
 
This is greater cost than the unconstrained system, as would be expected. 
 
Constrained Variation:  Using Equation 2-18 and the constraint equation, the equations to be 
solved for this case are: 
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The first equation simplifies to: 
     P = 250R 
 
which when solved simultaneously with the second equation gives the same results as direct 
substitution. 
 
Lagrange Multipliers:  The Lagrange, or augmented, function is: 
 
  L  =  1000P  +  4  x  109/PR  +  2.5  x  105R  +  (PR - 9000) 
 
Setting partial derivatives of L with respect to P, R and  equal to zero give: 
 
        1000 - 4 • 109/P2R + R = 0 
 
    2.5 • 105 - 4 • 109/PR2 + P = 0 
 
      PR – 9000 = 0 
 
Solving the above simultaneously gives the same results as the two previous methods and a value 
for the Lagrange multiplier. 
 
 P = 1500,  R = 6, = - 117.3 
 
Method of Steepest Ascent 
 
 A further application of the method of Lagrange multipliers is developing the method of 
steepest ascent (descent) for a function to be optimized.  This result will be valuable when search 
methods are discussed. 
 
 To illustrate the direction of steepest ascent a geometric representation is shown in Figure 
2-5.  To obtain the direction of steepest ascent, we wish to obtain the maximum value of dy, and 
y(x1, x2...xn) is a function of n variables.  Also, there is a constraint equation relating dx1, dx2 … 
dxn and ds as shown in Figure 2-5 for two independent variables. 
 
The problem is: 

         (2-25) 

             

         (2--26) 
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 To obtain the maximum value of dy the Lagrange function is formed as follows: 
  
 

        
 
 
 Differentiating L with respect to the independent variables dxj and equating to zero gives: 
    

     for  j = 1, 2, … n   (2-27) 

 
These n equations are solved simultaneously with the constraint equation for the values of dxj 

and .  Solving for  gives: 
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               (2-28) 
 
and solving for dxj by substituting Equation 2-28 into Equation 2-27 gives: 
 

      for j = 1, 2, … n (2-29) 

 
 
 The term in the brackets in Equation 2-29 is not a function of j, and consequently dxj is 
proportional to .  The positive sign indicates the direction of steepest ascent, and the 
negative sign indicates the direction of steepest descent. 
 
 If a constant of proportionality k is used to represent the term in the brackets in Equation 
2-29, this equation can be written as: 
 

       for j = 1, 2, … n             (2-30) 
 
 If a finite-difference approximation is used for dxj = (xj – xj0) and  is evaluated at 
x0, then the following equation gives the direction of steepest descent or gradient line. 
 

      for j = 1, 2, … n  (2-31)  
 
This equation can be written vector notation in terms of the gradient of y evaluated at x0, , 
as: 
                     
    x  =  x0  +  k       (2-32) 
 
If the positive sign is used, then movement is along the line in the direction of steepest ascent. If 
the negative sign is used, then movement is along the line in the direction of steepest descent.   
 
 The following example illustrates the use of the method of steepest descent on a simple 
function. 
 
Example 2-7 
 
Find the minimum along the direction of steepest descent of the function given below starting at 
the point x0 = (1, 1). 
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  y = x12  + x22 
 
Gradient line (steepest descent) is: 
     
  x  =  x0  -  k  
 
or for two independent variables: 
 

   
 
Evaluating the partial derivatives at the starting point x0 = (1, 1): 
 

   

 
The gradient line is: 
   x1 = 1 - 2k 
 
   x2 = 1 - 2k 
 
Substituting the gradient line into the function to be minimized gives: 
 
  y = (1 - 2k)2  +  (1 - 2k)2  =  2(1 - 2k)2 
 
Computing dy/dk will locate the minimum along the gradient line, i.e.,  
 

   
and 
 
  k = ½   is the stationary point 
 
The corresponding values of x1 and x2 are 
   
  x1 = 1 – 2(½) = 0  x2 = 1 – 2(½) = 0 
 
It turns out that the minimum along the gradient line is also the minimum for the function in this 
problem since it is the sum of squares. 
 
 The method of steepest ascent is the basis for several search techniques described in 
Chapter 6, e.g. Steep Ascent Partan.  It should be noted that when dealing with physical systems, 
the direction of steepest ascent (descent) may be only a direction of steep ascent (descent) 
depending on the scales used to represent the independent variables.  This is discussed and 
illustrated by Wilde (5), and Wilde and Beightler (4). 
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Economic Interpretation of the Lagrange Multipliers 
 
 The values of the Lagrange multipliers at the optimum provide additional and important 
information.  If the constraint equations are written with parameters bi on the right-hand side, the 
Lagrange multipliers give the change in the profit function with respect to these parameters,  

.  Many times, the right-hand sides of the constraint equations represent the availability 
of raw materials, demand for products or capacities of process units.  Consequently, it is 
frequently important to know how the optimal solution is affected by changes in availability, 
demand and capacities.  As we shall see, the Lagrange multipliers are given the names shadow 
prices and dual activity in linear programming where these changes are analyzed by sensitivity 
analysis. 
 
 The following brief derivation obtains the result that  for the case of one 
constraint and two independent variables, and the extension to m constraint equations with n 
independent variables is comparable. 
 
                          optimize:    y(x1, x2)        
            (2-33) 
   subject to:  f(x1, x2) = b 
 
First, we can obtain the following equation from the profit function by the chain rule.  
 

         (2-34) 
             
Also, we can obtain the next equation from the constraint equation written as f – b = 0 by the 
chain rule.  
 

         (2-35) 
 
Then the equation from the constraint, Equation 2-35, is multiplied by the Lagrange multiplier 
and added to the equation from the profit function, Equation 2-34, to give: 
   

    

Rearranging gives: 
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       (2-36) 
 
 The values of  and  are zero at the stationary point (necessary 
conditions), and consequently .  Thus, the change in the profit function y with 
respect to the right-hand side of the constraint b is equal to the negative of the Lagrange 
multiplier.  Also, comparable results can be obtained for the case on n independent variables and 
m constraint equations to obtain the following result using a similar procedure and arguments 
(7).  

           (2-37)  

 
 In the next section, we will see that the Lagrange multiplier is also a key factor in the 
analysis of problems with inequality constraints. 
 
Inequality Constraints 
  
 An additional complication arises when seeking the optimum value of a profit or cost 
function if inequality constraints are included.  Although the same procedures are used, it will be 
necessary to consider two cases for each inequality constraint equation.  One case is when the 
constraint is a strict equality and Lagrange multiplier is not zero.  The other is when the 
constraint is an inequality and Lagrange multiplier is zero.  This is best illustrated by the 
following example with one inequality constraint equation as shown below. 
    
   optimize:    y(x)                        
            (2-38) 
   subject to:  f(x) ≤ 0 
 
 As described previously, the procedure is to add a slack variable xs as xs2 and form the 
Lagrange function: 
 
                                    L(x, λ)  =  y(x) + λ [ f(x)  +  xs2 ]             (2-39) 
 
Then the first partial derivatives with respect to the xi's, xs and λ are set equal to zero to have a 
set of equations to be solved for the stationary points.  To illustrate the complication, the 
equation obtained for the slack variable is:  
 

        (2-40) 
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 The result is two cases, i.e., either λ = 0 and xs  0, or λ  0 and xs = 0.  If λ = 0 and xs
  0, the inequality holds; and the constraint is said to be loose, passive or inactive.  If λ  0 

and xs = 0, then the equality holds; and the constraint is said to be tight or active.  The following 
example illustrates this situation using a modification of the previous simple process. 
 
Example 2-8 
 
  For the process the cost function is: 
   
  C = 1000P  +  4 • 109/PR  +  2.5 •105 R 
  
However, C is subject to the inequality constraint equation. 
     
  PR < 9000 
 
Adding the slack variable S, as S2, and forming the Lagrange function gives: 
   
  L  =  1000P  +  4  •  109/PR  +  2.5  • 105 R + λ (PR  +  S2 – 9000) 
 
Setting the first partial derivatives of L with respect to P, R, S and λ equal to zero gives the 
following four equations: 
 

  

 
The two cases are λ  0, S = 0 and λ = 0, S  0.   
 
For the case of λ  0, S  0, the equality PR = 9000 holds, i.e., the constraint is active. This was 
the solution obtained in Example 2-6, and the results were: 
 
  C = $3.44 • 106 per year       P = 1500 psi       R = 6       y = - 117.3 
 
For the case of λ = 0, S  0, the constraint is an inequality, i.e., inactive.  This was the solution 
obtained in Example 2-6 and the results were: 
 
  C = $3.0 • 106 per year         P = 1000 psi        R = 4       S = (5000)½ 
 
 The example above had only one inequality constraint and two cases to consider.  
However, with several inequality constraints locating the stationary points can become time-
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consuming, for the possibilities must be searched exhaustively.  A procedure for this evaluation 
has been given by Cooper (7) and Walsh (8) as follows: 
 
1.  Solve the problem of optimizing: y(x), ignoring the inequality constraints, i.e., having all 
positive slack variables.  Designate this solution x0.  If x0 satisfies the constraints as inequalities 
an optimum has been found. 
 
2.  If one or more constraints are not satisfied, select one of the constraints to be an equality, i.e., 
active (the slack variable for this constraint is zero), and solve the problem.  Call this solution x1.  
If x1 satisfies all of the constraints, an optimum has been found. 
 
3.  If one or more constraints are not satisfied, repeat step 2 until every inequality constraint has 
been treated as an equality constraint (slack variable being zero) in turn. 
 
4.  If step 3 did not yield an optimum, select combinations of two inequality constraints at a time 
to be equalities; and solve the problem.  If one of these solutions satisfies all of the constraints, 
an optimum has been found. 
 
5.  If step 4 did not yield an optimum, select combinations of three inequality constraints at a 
time to be equalities, and solve the problem.  If one of these solutions satisfies all of the 
constraints, an optimum has been found.  If not, try combinations of four inequality constraints at 
a time to be equalities, etc. 
  
 The above procedure applies assuming that the stationary point located is a maximum or 
a minimum of the constrained problem.  However, there is a possibility that several stationary 
points will be located; some could be maxima, some minima and others saddle points.  In 
Example 2.5 four stationary points were found, two are maxima, one a minimum and one a 
saddle point.  Also, from Equation 2-40 for each inequality constraint where the strict inequality 
holds, the slack variable is positive; and the Lagrange multiplier is zero.  For each inequality 
constraint where the equality holds, the slack variable is zero, and the Lagrange multiplier is not 
zero. 
 
 In the next section necessary and sufficient conditions for constrained problems are 
described to determine the character of stationary points.  This will be similar to and an 
extension of the previous discussion for unconstrained problems. 
 
Necessary and Sufficient Conditions for Constrained Problems 
  
 The necessary conditions have been developed by Kuhn and Tucker (14) for a general 
nonlinear optimization problem with equality and inequality constraints.  This optimization 
problem written in terms of minimizing y(x) is: 
 
  minimize:  y(x)            (2-41) 
 
  subject to:  fi(x) < 0   for i = 1, 2, ... h    (2-42) 
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          fi(x) = 0  for i = h+1, ..., m         (2-43) 
 
where y(x) and fi(x) are twice continuously differentiable real-valued functions. 
  
 Any value of x that satisfies the constraint Equations (2-42) and (2-43) is called a feasible 
solution to the problem in the Kuhn-Tucker theory.  Then to locate points that can potentially be 
local minima of Equation 2-41 and satisfy the constraint Equations 2-42 and 2-43, the Kuhn-
Tucker necessary conditions are used.  These conditions are written in terms of the Lagrange 
function for the problem which is: 
 

      (2-44) 
 
where the xn+i's are the surplus variables used to convert the inequality constraints to equalities. 
 
 The necessary conditions for a constrained minimum are given by the following theorem 
(7, 8, 10, and 14). 
 
To minimize y(x) subject to fi(x) ≤ 0 for i = 1, 2 ... h and fi(x) = 0 for i = h + 1, ..., m, the 
necessary conditions for the existence of a relative minimum at x* are: 
 

1.   for j = 1. 2. … n 
 
2 fi(x*)  <  0 for i = 1, 2, …, h 
 
3. fi(x*)  =  0 for i = h+1, 2,…, m 
            (2-45) 
4. λi fi(x*)  =  0 for i = 1, 2, …, h 
 
5. λi  >  0  for i = 1, 2, …, h 
 
6. λi   is unrestricted in sign for i = h+1, 2, …, m 
 
Examining these conditions: 
 
The first one is setting the first partial derivatives of the Lagrange function with respect to the 
independent variables x1, x2, ..., xn equal to zero to locate the Kuhn-Tucker point, x*.   
 
The second and third conditions are repeating the inequality and equality constraint equations 
that must be satisfied at the minimum of the constrained problem.   
 
The fourth condition is another way of expressing λi xn+i = 0 for i = 1, 2, ..., h from setting the 
partial derivatives of the Lagrange function with respect to the surplus variables equal to zero.  
Either λi  ≠ 0 and xn+i  = 0 (constraint is active) or λi  = 0 and xn+i ≠ 0 (constraint is inactive).  
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Thus, the product of the Lagrange multiplier and the constraint equation set equal to zero is an 
equivalent statement, and this is called the complementary slackness condition (15).   
 
The fifth condition comes from examining Equation 2-37, i.e., .  The argument 
is that as bi is increased, the constraint region is enlarged; and this cannot result in a higher value 
for y(x*), the minimum in the region.  However, it could result in a lower value of y(x*); and 
correspondingly  would be negative, i.e., as bi increases, y(x*) could decrease. 
Therefore, if  is negative, then the Lagrange multiplier, λi, must be positive for 
Equation 2-37 to be satisfied.  This condition is called a constraint qualification, as will be 
discussed subsequently.   
 
For the sixth condition, it has been shown by Bazaraa and Shetty (15) that the Lagrange 
multipliers associated with the equality constraints are unrestricted in sign; and there is not an 
argument comparable to the one given above for the Lagrange multipliers associated with the 
inequality constraints. 
 
 For the problem of maximizing y(x) subject to inequality and equality constraints, the 
problem is as follows: 
 
  maximize: y(x)              (2-46) 
 
  subject to: fi(x) ≤ 0    for i = 1, 2, ..., h          (2-47) 
 
    fi(x) = 0    for i = h + 1, ..., m          (2-48) 
 
For this problem the Kuhn-Tucker conditions are:  
 

1.   for j = 1. 2. … n 
 
2 fi(x*)  <  0 for i = 1, 2,…, h 
 
3. fi(x*)  =  0 for i = h+1, 2,…, m 
            (2-49) 
4. λi fi(x*)  =  0 for i = 1, 2, …, h 
 
5. λi  <   0  for i = 1, 2, …, h 
 
6. λi   is unrestricted in sign for i = h+1, 2,…, m 
 
 These conditions are the same as the ones for minimizing given by Equation 2-45, except 
the inequality is reversed for the Lagrange multipliers in the fifth condition.  Also, the inequality 
constraints are written as less than or equal to zero for convenience in the subsequent discussion 
on sufficient conditions.  Inequality constraints that are greater than or equal to zero can be 
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converted to inequality constraints that are less than or equal to zero by multiplying by minus 
one (- 1). 
 
 The following example illustrates the Kuhn-Tucker necessary conditions for a simple 
problem. 
 
 
Example 2-9   
 
Locate the five Kuhn-Tucker points of the following problem and determine their character, i.e., 
maximum, minimum or saddle point. 
 
   optimize:  y = x1x2 
    
   subject to:   x1 +  x2   <  1 
     - x1 +  x2  <  1 
     - x1 -   x2  <  1 
        x1 -  x2   1 
 
A diagram of the above equations is given in Figure 2-6.  The function being optimized is the 
classic saddle point function that is constrained by plane.  
 

£
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The first step in the procedure is to locate the stationary points by ignoring the inequality 
constraints, i.e.,  =  = =  = 0.  If this point satisfies the constraints as inequalities, an 
optimum may have been found.  For this problem:  
 

    

 
The Kuhn-Tucker point is x0(0, 0), and evaluating its character by the unconstrained sufficiency 
conditions gives the following result:  
 

    

 
And applying Equation2-12: 
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The point x0 (0, 0) is a saddle point, and the constraints are satisfied. 
 
Proceeding to step two, one constraint equation at a time is selected, and the character of the 
Kuhn-Tucker point is determined.  Beginning with the first constraint equation as an equality, i.e.

0, and considering the other three as inequalities, = = = 0, gives the following 
equation for the Lagrange function. 
 
  L(x1, x2, )  =  x1x2 + (x1 + x2 – 1) 
and  

   
 
Solving gives: 
 
  x1 = ½,        x2 = ½,       = -½      y(½, ½) = ¼ 
 
The sign of the Lagrange multiplier is negative; and by the Kuhn-Tucker necessary conditions, 
the Lagrange multiplier is unrestricted in sign for an equality constraint. The point can be a 
maximum since x1 and x2 are positive, and the other constraint equations are satisfied as 
inequalities. The results for the other three points are shown on Figure 2-6 
 
  

1
01
10

0 21 -=== HH

1l ¹
2l 3l 4l

1l 1l

0100 21
2

11
2

12
1

=-+=
¶
¶

=+=
¶
¶

=+=
¶
¶ xx

x
yx

x
yx

x
y ll

1l



 41 

 Constraint Qualifications: In the theorems developed by Kuhn and Tucker (14), the 
constraint equations must satisfy certain conditions at the Kuhn-Tucker points, and these 
conditions are called constraint qualifications.  As given in Bazaraa and Shetty (15) there are 
several forms of constraint qualifications; and one according to Gill et. al. (16) is important for 
nonlinear constraints.  This is the condition that the gradients of the constraint equations at the 
Kuhn-Tucker point are linearly independent.  This constraint qualification is required for the 
necessary conditions given by Equations (2-45) and (2-49).  As an example, Kuhn and Tucker 
(14) constructed the constraint equations: 
 
    f1 = (1 – x1)3 – x2  >  0 
 
    f2  =  x1 > 0 
 
     f3  =  x2 > 0 
 
These constraint equations do not satisfy the condition of linear independence at point x1* = 1 
and x2* = 0.  At this point  = [-3(1 – x1)2 -x2]  =  (0, -1),   = (1, 0) and   = (0, 1) are 
not linearly independent.  At such a point as this one the necessary condition may fail to hold, 
and Kuhn and Tucker (14) give arguments that this constraint qualification is required to ensure 
the existence of the Lagrange multipliers at the optimum point.  Verification of the constraint 
qualifications for a general nonlinear programming problem is almost an impossible task 
according to Avriel (10).  He states that fortunately in practice constraint qualification usually 
holds, and it is justifiable to use the existence of the Lagrange Multipliers as a basis for having 
the necessary conditions hold. 
 
 Sufficient Conditions: The same concepts used for unconstrained problems are followed 
to develop the sufficient conditions for constrained problems.  This involves expanding the 
Lagrange function in a Taylor series about the Kuhn-Tucker point located using the necessary 
conditions.  The Taylor series is simplified by neglecting third and higher order terms to give a 
function that contains only terms involving second partial derivatives evaluated at the Kuhn-
Tucker point.  This gives a differential quadratic form, and a test similar to the one for the 
unconstrained problem is obtained to determine if the Kuhn-Tucker point is a maximum, 
minimum or saddle.  The sufficient conditions for the case of both inequality and equality 
constraints are more elaborate than if only equality constraints are involved.  We have space to 
give only the appropriate theorems and describe their development and use.  Further details are 
given by Avriel (10), Bazaraa and Shetty (15) and Reklaitis, et al., (17). 
 
 Considering the case of only equality constraints first, the Lagrange function for n 
independent variables and m equality constraint equations is given by the following equation. 
 

   L(x, )  =  y(x) +   f i(x)     (2-50) 

            
Expanding the Lagrange function in a Taylor series about the Kuhn-Tucker point x* gives: 
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(2-51) 

          higher  order terms 
 
 This equation is comparable to Equation 2-8, and subscripts xi, xj and xk indicate partial 
differentiation with respect to those variables.  Again, the first partial derivatives are zero at the 
Kuhn-Tucker point by the necessary conditions, and x is selected sufficiently close to x* such 
that the higher order terms are negligible when compared to the second order terms.  This gives 
the following equation which is comparable to Equation 2-9 for the unconstrained case. 
    

              (2-52)              

 
 As previously, we need to determine if the term in the brackets remains positive 
(minimum), remains negative (maximum) or changes sign (saddle point) for small feasible 
changes in x about x*.  The term in the bracket is a differential quadratic form. 
 
 To determine if the quadratic form is always positive or always negative, results 
comparable to those given by Equation (2-7) are required with the extension that the constraints 
also be satisfied, i.e., for feasible values of x.  A theorem is given by Avriel (10) establishes 
these conditions, and this theorem is then applied to the differential quadratic form of the 
Lagrange function.  The result, after Avriel (10), is the following theorem for the sufficient 
conditions of the optimization problem with only equality constraints.  In this theorem the 
second partial derivatives of the Lagrange function evaluated at the Kuhn-Tucker point x* are 

are written as Ljk.  Also, first partial derivatives of the constraint equations evaluated 

at the Kuhn-Tucker point x* are and are written fjk.  The theorem states: 
 
Let y(x) and fi(x) = 0, i = 1, 2, ..., m, be twice continuously differentiable real valued functions.  
If there exist vectors x* and *, such that: 
 
   Li(x*, * ) = 0,  i = 1, 2, ..., n 
and if:     
 

   
 
for p = m+1, .., n, then y(x*) has  a strict local minimum at x*, such that: 
   fi(x*) = 0,  i = 1, 2, ..., m 
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 The proof of this theorem is given by Avriel (10) and follows the discussion of the 
concepts given above.  The comparable result for a strict maxima is obtained by changing (-1)m 
in the above theorem to (-1)p, according to Avriel (10).  The following example illustrates the 
application of this theorem. 
 
Example 2-10   
 
Consider the following problem. 
     
    optimize:  x12  + 2x22  + 3x32 
 
    subject to:   x1  + 2x2  +  4x3 - 12  =  0 
      2x1  +   x2  +  3x3 - 10  =  0 
 
Forming the Lagrange function and differentiating partially with respect to x1, x2, x3, λ1 and λ2 
gives the following set of equations to be solved for the Kuhn-Tucker point. 
     

     

             
Solving the above equation set simultaneously gives the following values for the Kuhn-Tucker 
point. 
 
 x1   =  112/81,     x2   =  118/81,    x3  =  52/27, λ1=  - 80/27,     λ2= 8/81 
 
From the necessary conditions of Equations 2-45 or 2-49 the Lagrange multipliers are 
unrestricted in sign, and the value of the determinants from the theorem on sufficiency 
conditions is required to determine the character of this point.  The partial derivatives needed for 
this evaluation are: 
 
   L11 =  2 L12  =  0 L13  =  0 
   L21 =  0 L22  =  4 L23  =  0 
   L31  = 0 L32  =  0 L33  =  6 
   f11   = 1 f12   =  2 f13   =  4 
   f21   = 2 f22   =  1 f23  =   3 
  
The determinant is m = 2, n = 3, p = 3, only one determinant in this case: 
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The value of D3 is positive, and Kuhn-Tucker point is a minimum. 
  
 The sufficient conditions for problems with equality and inequality constraints, Equations 
(2-41), (2-42) and (2-43), are summarized in the following theorem.  There are a number of 
mathematical concepts and theorems required to obtain this result.  These are given in some 
detail by Avriel (10), Bazaraa and Shetty (15) and Reklaitis, e t. al. (17); but it is not feasible to 
describe them in the space available here. 
 
Let y(x), fi(x) > 0, i = 1, 2, ... , h and fi(x) = 0, i = h+1, ...,m be twice continuously differentiable 
real-valued functions.  If there exist vectors x* and λ* satisfying 
 

  
 
 λi fi(x*) =   0   i = 1, 2, ..., h 
    
 λi >  0      i = 1, 2, ..., h 
 
 and for every z  0 such that: 
 

  
 
 it follows that: 
 

  
 
 then x* is a strict local minimum. 
 
The following example illustrates the application of this theorem. 
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Example 2-11 
 
Consider the following problem after Reklaitis et. al. (17). 
 
   minimize:  (x1 - 1)2 + x22 
    
   subject to:  - x1 + x22 > 0 
  
Applying the theorem gives: 
 
 
    2(x1 –1) + λ = 0 
    2x2  – 2x2 λ = 0 
    λ (- x1 + x22)    = 0 
           λ     > 0 
 
Solving this set of equations gives x1 = 0, x2 = 0, λ = 2 for the Kuhn-Tucker point.  Then 
applying the sufficient conditions gives the following results at x* = (0,0). 
      
    2z12  – 2z22 > 0 
 
However, for all finite values of z (z1, z2) the above inequalities cannot be satisfied, and the 
second order sufficiency conditions show that the point is not a minimum. 
 
 In summary, the necessary and sufficient conditions for nonlinear programming problems 
have been described and illustrated with examples.  References have been given for more details 
for this theory. 
 
 An important special case is when the economic model is concave, and all of the 
constraint equation are convex and are inequalities.  This is known as convex programming. "A 
function is concave if linear interpolation between its values at any two points of definition 
yields a value not greater than its actual value at the point of interpolation; such a function is the 
negative of a convex function" according to Kuhn and Tucker (14).  Thus, the convex 
programming problem can be stated as follows. 
                     
              maximize:   y(x)        (2-53) 
                         
   subject to:    fi(x) < 0 for i = 1, 2, ..., m     (2-54) 
 
The necessary and sufficient conditions for the maximum of concave function y(x) subject to 
convex constraints fi(x) < 0, i = 1, 2, ..., m are the Kuhn Tucker conditions given below as: 
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 1.  

 2.     
            (2-55)  

 3.  
 
 4.  
 
The theorem from Cooper (7) that establishes the above result is: 
 
If y(x) is a strictly concave function and fi(x), i = 1, 2, ..., m are convex functions which are 
continuous and differentiable, then the Kuhn-Tucker conditions, Equation 2-49, are sufficient as 
well as necessary for a global maximum. 
 
The proof of this theorem uses the definition of convex and concave functions and the fact that 
the Lagrange function can be formulated as the sum of concave functions that is concave. 
 
 These concepts and results for the Kuhn-Tucker conditions and those given previously 
will be valuable in our discussion of modern optimization procedures in the following chapters.  
Those interested in further theoretical results are referred to the references at the end of this 
chapter and Chapter 6.  Also, in industrial practice we will see that the concepts from the Kuhn-
Tucker conditions are used in computer programs for advanced multivariable search methods to 
optimize economic and process models that are too elaborate for the algebraic manipulations 
required to use these theories directly. 
 
Closure 
 
 In the chapter we have discussed the necessary and sufficient conditions to evaluate the 
character of stationary points for unconstrained and constrained optimization problems.  It was 
necessary to confine the illustration of these procedures to simple algebraic models.  Even 
though we are not able to apply these procedures directly to the optimization of industrial 
processes, the concepts developed in this chapter are used many times over in the following 
chapters. 
 
 It is worthwhile to attempt to solve the following unconstrained economic model from 
the design of horizontal vapor condensers in evaporators used in water desalination plants to see 
one of the major limitations of the classical theory of maxima and minima.  The problem is to 
minimize the cost given by the following equation. 
 
 
  C = aN D L   + b N  D  L   + c NDL + d N D L    (2-56) 
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In this equation the cost is in dollars per year; N is the number of tubes in the condenser; D is the 
nominal diameter of the tubes in inches; L is the tube length in feet; and a, b, c, and d are 
coefficients that vary with the fluids involved and the construction costs.  Avriel and Wilde (18) 
give further details about the significance of each term.  This equation is typical of the form that 
is obtained from assembling correlations of equipment costs and related process operating 
conditions for preliminary cost estimates. 
 
 Differentiating this equation with respect to the three independent variables N, D, and L, 
and setting the results equal to zero gives the following three equations to be solved for the 
values of N, D, and L that would give the minimum cost. 
 
(-7a/6)N D L   +  (-0.2b)N D L   +  cDL  +  (-1.8d)N D L   = 0 
 
 -aN  D  L   +  0.8bN  D  L   +  cNL  +  (-4.8d)N  D  L       = 0  (2-57) 
                  
                    (-4a/3)N  D  L   –  N  D  L  + cND  + dN D       = 0       
 
 There is no straightforward way to solve this relatively complicated set of three nonlinear 
algebraic equations other than numerically with a root-finding procedure at this point.  This then 
illustrates one on the major limitations with classical methods, i.e., if the variables in the 
economic model have fractional exponents, then a set of nonlinear algebraic equations are 
obtained that will probably require an iterative solution using a computer.  However, as will be 
seen in the chapter on geometric programming, we will be able to obtain the optimal solution for 
this economic model by solving a set of linear algebraic equations.  We will take advantage of 
the mathematical structure of the problems to be able to find the optimum readily.  In fact, this 
will be true of most of the modern methods; they take advantage of the mathematical structure of 
the optimization problem to quickly find the best values of the independent variables and the 
maximum profit or minimum cost. 
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Problems 
 
2-1. Locate the stationary points of the following functions and determine their character. 
   a.  y  =  x4/2  -  x2/2 
   b.  y  =  x7 
   c.  y  =  x12  +  x1x2  +  x22 
   d.  y  =  2x12 + 3x22 + 4x32 - 8x1 - 12x2 - 24x3 + 110 
 
2-2. Find the global maximum of the function 
 
  y(x1, x2)  =  5(x1 - 3)2  -  12(x2 + 5)2  +  6x1x2 
 
  in the region  0  ≤  x1  ≤  10 
     0  ≤  x2  ≤  5 
 
2-3. Use the Jacobian determinants and obtain the two equations to be solved with the 
constraint equation for the following problem  
 
  optimize: y(x1, x2, x3) 
 
  subject to: f(x1, x2, x3) = 0 
 
2-4. Solve the following problem by the method of constrained variation and the method of 
Lagrange multipliers, evaluating x1, x2 and the Lagrange multiplier λ at the optimum. 
   
  maximize: x1  +  x2 
    
  subject to: x12  +  x22  =  1 
 
2-5. Solve the following problem by the method of Lagrange multipliers and give the 
character of the stationary point. 
   
  minimize:  2x12 - 4x1x2 + 4x22 + x1 - 3x2   
   
  subject to: 10x1 + 5x2 ≤ 3 
 
2-6. Consider the following problem 
   
  optimize: -x12 - 2x1 + x22 
 
  subject to:  x12 + x22 - 1 ≤ 0 
 
a. Obtain the equation set to be solved to locate the stationary points of the above problem using 
the method of Lagrange multipliers.  Convert the inequality constraint to an equality constraint 
with the slack variable x3 as x32; why? 
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b. Show that the following are solutions to the algebraic equations obtained in part (a). 
 

Stationary Points 
 
   A    B   C  D 
  x1 -½   -½  -1  1 
  x2 √(3)/2  -√(3)/2   0  0 
  x3  0    0   0  0 
  λ -1   -1   0  2 
 
c. Based on the value of the function being optimized state whether stationary points A through 
D are maximum, minimum or saddle points.   
 
2-7. The cost of operation of a continuous, stirred-tank reactor is given by the following 
equation: 
 
  CT  = Cf  cAo q  +  CmV 
 
The total operating cost CT ($/hr) is the sum of the cost of the feed, Cf cAo q, and the cost of 
mixing, CmV.  The following gives the values for the reactor. 
 
  Cf  =  $5.00/lb-mole of A, cost of feed 
  cAo =  0.04 lb-mole/ft3, initial concentration of A. 
  q   =  volumetric flow rate of feed to the reactor in ft3/hr. 
  Cm  =  $0.30/hr-ft3, cost of mixing 
  V   =  volume of reactor in ft3 
 
We are interested in obtaining the minimum total operating cost and the optimal values of the 
feed rate, q; reactor volume, V; and concentration in the reactor, cA.  The following first order 
reaction takes place in the reactor. 
 
  A → B 
 
where the rate of formation of B, rB, is given by  
     
  rB= kcA  
  
where k = 0.1 hr-1. 
 
a. If 10 lb-moles per hour of B are to be produced, give the two material balance constraint 
equations which restrict the values of the independent variables.  (There is no B in the feed 
stream.) 
 
b. Form the Lagrange function and perform the appropriate differentiation to obtain the set 
of equations that would be solved for the optimal values of the independent variables.  How 
many equations and variables are obtained? 
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c.  Solve for the optimal values of the reactor volume, V; feed rate, q; and concentration of 
A in the product, cA. 
 
2-8. Solve the following problem by the method of Lagrange multipliers, and determine the 
character of the stationary point. 
  
  optimize: 2x12 + 2x1x2 + x22 - 20x1 - 14x2 
  
  subject to:  x1 + 3x2 ≤ 5 
 
    2x1 -  x2  ≤ 4 
 
2-9.9 Solve the following problem by the method of Lagrange multipliers, and determine the 
character of the stationary point: 
 
  optimize: (1/3)x1 + x2 
 
  subject to: - x1 + x2 ≤ 0 
 
      x1 + x2 ≤ 3  
 
2-10. The total feed rate to three chemical reactors in parallel is 1100 pounds per hour.  Each 
reactor is operating with a different catalyst and conditions of temperature and pressure.  The 
profit function for each reactor has the feed rate as the independent variable, and the parameters 
in the equation are determined by the catalyst and operating conditions.  The profit functions for 
each reactor are given below: 
 
  P1 = 0.2F1 - 2(F1/100)2 
 
  P2 = 0.2F2 - 4(F2/100)2 
 
  P3 = 0.2F3 - 6(F3/100)2 
 
Determine the maximum profit and the optimal feed rate to each reactor. 
 
2-11. Solve the following problem by the method of Lagrange multipliers and determine the 
character of the stationary points. 
 
  maximize: 3x12 + 2x22 
 
  subject to: x12 + x22  ≤  25 
 
    9x1 - x22  ≤  27  
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2-12. Find the stationary points of the following problem, and determine their character, i.e., 
maximum, minimum or saddle point. 
 
  optimize: 2x12 + x22 - 5x1 - 4x2  
    
  subject to:   x1 + 3x2  ≤  5   
     
    2x1 - x2   ≤  4 
 
2-13. The rate of return (ROR) is defined as the interest rate where the net present value (NPV) 
is zero for a specified number of years, n, and initial cash flow CF0 which is negative.  This can 
be formulated as an optimization problem as follows: 
 
  minimize:  (NPV)2 
 
For the case of constant cash flows, CFj = A, develop the equation to determine the rate of return.  
The net present value is given by the following equation. 
 
             NPV =   - CF0   +  A[1 - (i + 1)-n] / i 
 
2-14. Derive the Lagrange function for n independent variables and m constraint equations, 
Equation 2-24.  Begin by multiplying the constraint equations given in Equation (2-19) by 
Lagrange multipliers λ1, λ2, …, λm.  Then add all of the equations, rearrange terms and obtain the 
result as Equation 2-24. 
 
2-15. For sufficient conditions of the equality constraint problem to determine if the quadratic 
form is positive or negative definite, the signs of the roots of a polynomial can be evaluated.  
This characteristic polynomial is obtained by evaluating the following determinant which 
includes the second partial derivatives of the Lagrange function evaluated at the Kuhn-Tucker 
points, written as Ljk for simplicity, and the first partial derivative of the constraint 

equations evaluated at the Kuhn-Tucker point, written as fjk for simplicity. 
 
 

   
 
The following results are used to evaluate the type of stationary points.  First, evaluate the roots 
of P(a) using the above equation.  
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If each root of P(a) is positive, then x* is a maximum.   
 
If each root of P(a) is negative, then x* is a minimum.   
 
If the roots are of mixed sign, then x* is a saddle point. 
 
Use the results given in Example 2-10 in the above determinant and confirm the character of the 
Kuhn-Tucker point by this method.  (There is a comparable sufficient condition test for the 
unconstrained problem which is described by Sivazlian and Stanfel (9).) 
 


